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Abstract 

This document defines the “Functional Mock-up Interface for Co-Simulation”. While the interface 
specification “Functional Mock-up for Model Exchange” (see MODELISAR 2010 for details) gives 
standardized access to simulation model equations, the basic intention of this document is to provide an 
interface standard for coupling two or more simulation tools in a co-simulation environment. Co-
simulation is a simulation technique for coupled time-continuous and time-discrete systems that exploits 
the modular structure of coupled problems in all stages of the simulation process (pre-processing, time 
integration, post-processing).  

The data exchange between subsystems is restricted to discrete communication points (sampling points, 
synchronization points). In the time between two communication points, the subsystems are solved 
independently from each other by their individual solver. Master algorithms control the data exchange 
between subsystems and the synchronization of all slave simulation solvers (slaves). 

There are two possible ways to provide slave subsystems for co-simulation: subsystems with their 
specific solver, which can be simulated as stand-alone components (dll-files), or subsystems with their 
simulation tool, in which they have been developed. Both approaches are covered by this standard. 

FMI for Co-Simulation provides interfaces between master and slaves and supports rather simple master 
algorithms as well as more sophisticated ones. A small set of easy to use C-functions was developed to 
implement the interface. Note that the master algorithm itself is not part of the standard FMI for Co-
Simulation, but a very simple example is given and discussed in this document. 

All information about the slaves, which is relevant for the communication in the co-simulation 
environment is provided in a slave specific XML-file. In particular, this includes a set of capability flags to 
characterize the ability of the slave to support advanced master algorithms, e.g. the usage of variable 
communication step sizes, higher order signal extrapolation, or others. 
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1. Overview 

This document specifies a standardized Functional Mock-up Interface (FMI) for the coupling of two or 
more simulation models in a co-simulation environment (FMI for Co-Simulation). Co-simulation is a 
rather general approach to the simulation of coupled technical systems and coupled physical 
phenomena in engineering with focus on instationary (time-dependent) problems. FMI for Co-Simulation 
is designed both for the coupling of simulation tools (simulator coupling, tool coupling), and coupling with 
subsystem models, which have been exported by their simulators together with its solvers as runnable 
code. 

Co-simulation exploits the modular structure of coupled problems in all stages of the simulation process 
beginning with the separate model setup and preprocessing for the individual subsystems in different 
simulation tools. During time integration, the simulation is again performed independently for all 

subsystems restricting the data exchange between subsystems to discrete communication points . 

Finally, also the visualization and post-processing of simulation data is done individually for each 

subsystem in its own native simulation tool. In different contexts, the communication points , the 

communication steps  and the communication step sizes  are also known as 

sampling points (synchronization points), macro steps and sampling rates, respectively. The term 
“communication point” in FMI for Co-Simulation refers to the communication between simulation tools 
and should not be mixed with the output points for saving simulation results to file.  

itc

itc

1+→ ii tctc iii tctchc −= +1:

FMI for Co-Simulation is an interface standard for the solution of time dependent coupled systems 
consisting of subsystems that are continuous in time (model components that are described by 
instationary differential equations) or time-discrete (model components that are described by difference 
equations like, e.g., discrete controllers). In a block representation of the coupled system, the 

subsystems are represented by blocks with (internal) state variables  that are connected to other 

subsystems (blocks) of the coupled problem by subsystem inputs  and subsystem outputs . In 

this framework, the physical connections between subsystems are represented by mathematical coupling 

conditions between the inputs  and the outputs  of all subsystems [R. Kübler, W. Schiehlen: 

Two methods of simulator coupling. - Mathematical and Computer Modeling of Dynamical Systems 
6(2000)93-113]. 

)(tx

)(tu )(ty

)(tu )(ty

FMI for Co-Simulation addresses two basic aspects: 

1. 

2. 

the data exchange between subsystems and 

algorithmic issues to synchronize the simulation of all subsystems and to proceed in communication 

steps (macro steps)  from initial time  to end time . 1+→ ii tctc startttc =:0 stopN ttc =:

For the first aspect, data exchange, the individual simulation tools have to be connected via MPI, 
TCP/IP, sockets or alternative ways of communication. In each individual simulation tool, these 
connections are initialized before the beginning of the time integration. In the co-simulation environment, 

the mapping from all subsystem outputs  to the subsystem inputs  has to be initialized to 

consider all physical coupling between the subsystems. 

)(ty )(tu
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For the second aspect, a co-simulation specific software component is needed to organize the progress 

from  to  in communication steps  and the data exchange between 

subsystems at the communication points 

startttc =0 stopNtc = t 1+→ ii tctc

start i stopt tc t≤ ≤  (exchange of subsystem outputs ). This 

software component is called master of the co-simulation environment. It may be implemented in one of 
the individual simulation tools (master tool) or in a separate simulation backplane. In its most general 
form, the coupled system may be simulated in nested co-simulation environments and FMI for Co-
Simulation applies to each level of the hierarchy. 

)( itcy

FMI for Co-Simulation defines interface routines for the communication between a master and individual 
simulation tools (slaves) in a co-simulation environment. A simulation tool or the part of it prepared for 
co-simulation by implementing the FMI is called an FMU (Functional Mock-up Unit)1. 

The most common master algorithm stops at each communication point  the time integration of all 

slaves, collects the outputs from all subsystems, evaluates the subsystem inputs , 

distributes these subsystem inputs to the slaves and continues the (co-)simulation with the next 

communication step with fixed communication step size hc . In each slave, an 

appropriate solver is used to integrate one of the subsystems for a given communication 

step . The most simple co-simulation algorithms approximate the (unknown) subsystem inputs 

by frozen data for tc

itc

)( itcy )( itcu

hctctctc iii +=→ +1

1+→ ii tctc

)(),( itcttu > )(u itc 1i it tc +≤ < . 

FMI for Co-Simulation supports this classical brute force approach as well as more sophisticated master 

algorithms that adapt, e.g., the communication step size  to the solution behavior 

(communication step size control), use higher order signal extrapolation to approximate the subsystem 

inputs 

iii tctchc −= +1

1( ), ( )i iu t tc t tc +≤ < , or handle the subsystems in each communication step sequentially such that 

intermediate results from the very first subsystems may be used to improve the approximation of 

subsystem inputs  in later stages of the communication step. FMI for Co-Simulation is designed to 

support a very general class of master algorithms but it does not define the master algorithm itself. 

)(tu

Subsystem inputs and subsystem outputs are described in a slave specific XML-file that contains all 
information about slave solver, slave model etc. being relevant for the co-simulation environment. The 
ability of slaves to support more sophisticated master algorithms is characterized by a set of capability 
flags that are added to the slave specific XML-file. Typical examples are the ability to handle variable 

communication step sizes  and the ability to repeat a rejected communication step  with 

reduced communication step size. 

ihc 1+→ ii tctc

The current document is structured as follows: After this general introduction and overview, Section 2 
discusses the general phases of co-simulation workflow together with a more detailed description of all 
components of a co-simulation environment. The interface itself is defined and discussed in Section 3. 
Section 4 describes the structure of the archive called Functional Mock-up Unit (FMU), followed by a list 

                                                      
1 This definition differs slightly from the one used in the FMI for Model Exchange in that, in the case of tool coupling the original 

tool is additionally required to perform the co-simulation. 
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of references and the glossary. Additional issues like future extensions of FMI for Co-Simulation, further 
examples of simulator coupling and some numerical issues are summarized in the Appendix. 
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2. Co-Simulation 

This section gives an overview on co-simulation from a process perspective describing a sequence of 
phases that are part of a co-simulation task. For the subsequent phases different aspects of FMI for Co-
Simulation have to be considered. Section 2 also describes different co-simulation scenarios, which are 
called “code generation” and “tool coupling” in this document.  

2.1. Generic Co-Simulation Activity Flow 

2.1.1. Process Assumptions 

The following sections are meant to indicate the possible process steps that may be taken by simulation 
tools being part in a co-simulation setting. The overall process can be divided into a design phase, a 
deployment phase, and a simulation phase. 

 

 

Figure 1: Co-Simulation Process Phases 

2.1.1.1. Design Phase 

The design phase (Figure 2) encompasses all the activities linked to the creation of a simulation model, 
the packaging of the simulation model into an FMU component, and the composition of a combined 
system model that makes use of several FMU components. 
 

Figure 2: Design Phase Steps 

Some vendors may only provide modeling and transformation capabilities for their simulation tools; the 
simulation tool only provides an 'FMU export' feature, and is referred to as a slave simulator. 

Other vendors may only provide composition capabilities for their simulation tools; such simulators are 
pure co-simulation platforms, and generally provide an 'FMU import' feature. A simulator of this type is 
referred to as master simulator. 

A simulation tool can also provide both FMU export and FMU import features. As a result, an FMU can 
be imported that includes itself a number of nested FMUs leading to a hierarchical composition of FMUs. 

The following paragraphs describe each individual design step in more detail. 

Modeling Step 
The modeling step is the sole responsibility of the slave simulator. The user creates a simulation model 
for a certain subsystem according to the specific requirements of the simulator. 
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Transformation Step 
Once the simulation model is ready, the user needs to decide how the subsystem model will be exported 
into an FMU implemented either with the FMI for Model Exchange API (see specification document for 
details) or with the FMI for Co-Simulation API (Figure 3). In this document only the second case is 
discussed. 
 

 

Figure 3: FMU Export Alternatives 

The first decision is in terms of parameters; a list of model parameters is selected that will be made 
public to the master. The result is the generation of the 'Model Description' XML file which describes 
the model in terms of a black box. 

The second decision pertains to the form in which the model will be exposed to the master. Two 
alternatives are possible: 

• Code Generation: The subsystem model is converted into code, i.e., the equations as well as the 
solver are compiled into a shared library for one or more targets (similar to the FMI for Model 
Exchange). Both model code and shared library can be included in the FMU archive (see section 4 for 
details). The master uses the shared library during a simulation run. In the XML-file this is indicated 
by the Implementation flag with the value CoSimulation_StandAlone. 

• Tool Coupling: The subsystem model and dependencies are stored directly within the FMU. The 
master needs to couple to the original slave simulator that exported the FMU to be able to perform a 
simulation run. Instead of the compiled model code the FMU archive contains a shared library of a 
slave tool specific wrapper, which is to be imported by the master tool and interfaces the external 
tool. The XML Implementation flag has the value CoSimulation_Tool (for details see also 3.5.2). 

The end-result is an FMU that contains a Model description XML file, and possibly the generated model 
code, compiled shared libraries, or the actual model files. The FMU may be published to some FMU 
library; two alternatives are possible: 
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• The slave simulator published the FMU to a proprietary location within the simulator environment, or 

• the FMI for PLM API is used to publish the FMU to a central PLM repository. 

Composition Step 

In general, co-simulation platforms require some form of composition of slave simulation models in order 
to join subsystem models to a complete simulation system. This composition may be performed in 
different manners, and typically results in some form of a component-connection graph structure (Figure 
4). In this specification, components denote imported FMU instances and the connections represent the 
communication paths used to exchange data between FMUs. The master is then responsible to schedule 
communication between components (master algorithm). 
 

 

Figure 4: Component-Connection Graph Structure 

A component-connection graph variant commonly used is the co-simulation with signal pools (Figure 5). 
Typically a component publishes a specific output variable that is subscribed by several other 
components as input. A co-simulation signal pool model can easily be converted to a connection graph 
model. 
 

 

Figure 5: Signal-Pool Variant of a Component-Connection Graph Structure 

A master can import an FMU by reading the FMU’s zip-archive and the therein contained Model 
Description XML file. The model description provides the information required by the master to expose 
the name, the parameters, inputs and outputs of the FMU. 
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Figure 6: FMU Classifier/Instance Differences 

To ensure reusability of an FMU within the same component-connection graph, a clear distinction is 
made between classes and instances. Each specific FMU is a subsystem class with a unique identifier 
(the name of an FMU is subsystem dependent). Because an FMU may appear several times within a 
component-connection graph, an FMU is instantiated with each instance being assigned a unique 
identifier. The FMU instance denotes then a component within the component-connection graph. 

Additionally, each FMU instance stores the initial parameter values and the connection-graph can store 
the simulation parameters. 

2.1.1.2. Deployment Phase 

If co-simulation is enacted within a single host, all FMU components need to be accessible to that host. 
The master has direct file-access to the FMUs; in the simulation phase, the instantiation of FMUs can 
occur directly within the master process. 

In the context of distributed co-simulation, the master typically communicates with slave simulators 
located on remote machines. The slave simulator is instructed to load the FMU in memory, and exposes 
the loaded FMU as an instance to the master. To do so, the slave simulation requires access to the 
FMU. 
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Figure 7: Distribution of FMUs across a Co-Simulation Cluster 

Deployment refers to the act of making FMUs available to the slave simulators located remotely to the 
master; deployment can be performed in different ways. 

An offline deployment refers to the manual transport of FMUs to remote locations. Some co-simulation 
platforms perform deployment within the composition phase. FMUs are copied remotely by the user.  

An online deployment is the automatic deployment of FMUs on different hosts by the master. The user 
only needs to specify on which hosts the various FMU instances need to be transferred to. 

Either way, the end result is that the various FMUs used by the master are distributed on the intended 
hosts. 

2.1.1.3. Simulation Phase 

The simulation phase (Figure 8) encompasses all the activities related to the execution runtime. The 
master is responsible for the lifecycle of FMU instances within a simulation run (experiment). 
 

 

Figure 8: The Simulation Phase 

The lifecycle of an FMU is comprised by the following sub-phases. 

Instantiation Sub-phase 

The master simulator is responsible for the instantiation of all FMU instances contained within the 
component-connection graph. The FMUs are then loaded into memory and instantiated. 
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Initialization Sub-phase 

Once an FMU instance is ready, the master simulator can set the initial values for each FMU-instance 
parameter as defined in the component-connection graph. All FMU instances are initialized before 
simulation can start. 

Simulation Sub-phase 

The master simulator is responsible for the proper orchestration of the different FMU instances according 
to a so-called master algorithm (see section 2.2). 

Shutdown Sub-phase 

The master simulator is responsible for the proper memory deallocation locally and remotely. All FMU 
instances need to be shutdown; optionally, the FMUs themselves may be deleted from the operating 
system. 

2.1.2. Distributed Infrastructure Assumptions 

This section relates to the general assumptions that are made in this document about the kind of co-
simulation architecture available on the market. The objective is to ensure that the FMI for co-simulation 
API is generic enough to be adopted as wide as possible.  

Focus is given to the distributed aspect of co-simulation which is of particular interest due the different 
possibilities available on the market. 

2.1.2.1. Generic Architecture 

In the simplest compute / IT scenario, co-simulation is performed on one computer with shared memory 
and a shared file system. The master simulation tool can import the shared library file from the FMU 
(Figure 9). 
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Figure 9: Co-simulation with generated code on a single computer 

Figure 10 shows, how a tool coupling scenario can be performed on a single computer. From a user 
account the FMI co-simulators to be deployed are accessible without additional authentication. 
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Figure 10: Co-simulation with tool coupling on a single computer 

In a distributed co-simulation compute / IT scenario, the FMI co-simulators to be deployed are installed 
on different computers with maybe different OS (cluster computer, compute farm, computers at different 
locations) connected by LAN, WLAN, or WAN via TCP/IP. The user has authorized access (e.g., a user 
account) to the computers with the FMI simulators to be deployed. 
 

 

Figure 11: Distributed Co-simulation Infrastructure 

In such scenario, in order to couple an FMI co-simulation slave on one computer to an FMI co-simulation 
master on another computer, a so called FMI co-simulation backbone or framework has to be available 
(see Figure 11, communication layer tool). This backbone is a special middle-ware. It consists of 
software on, both, co-simulation master and slave computer and performs the network communication 
between master and slave. In effect, the FMI co-simulation master does not notice and differentiate the 
location of the slave simulators.  

The FMI co-simulation master (simulator) couples to the involved slave simulators through their FMI in 
form of a zip-archive. Therefore, for every remote co-simulation slave an FMI zip-archive has to be 
provided on the master's computer. This zip-archive, as well as the contained shared library file (DLL), 
has to be compatible to the FMI backplane deployed for the connection with the respective slave 
simulator. The co-simulation master reads and evaluates the XML description file in the FMI zip-archive. 
The DLL contained in this zip-archive provides functions according to the FMI which are able to 
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communicate with the remote slave simulator via the FMI co-simulation backplane. The authentication on 
the remote computer(s) is also performed by this backbone. 

On the FMI co-simulation slave computer this backbone comprises an application server with an FMI 
(master side) which can couple to an FMI slave. The server accesses the zip-archive of the FMI slave. 
The application server loads/links the DLL to perform the communication between co-simulation master 
and this slave. 

2.1.2.2. Assumptions 
FMU Availability Assumption 

The general assumption is that an FMU is already available on the host where it will be started. 
This assumption is fulfilled by an online/offline deployment. 

Communication Assumption 

No assumption is made as to which communication protocol or transport shall be used to access the 
FMU instance across a network. The FMI-for-co-simulation shall not include details about host, tcp/udp 
ports, etc. 

FMI-for-co-simulation can only include local parameter specifications. The co-simulation framework 
provides the remoting capabilities and is responsible to communicate with remote FMUs. 

Simulator Assumption 

The master simulator shall be given as little knowledge as possible about the slave simulator in a tool 
coupling scenario. The objective is two fold: 

• wrap all specific parameters required by a slave simulator in an implementation exposing the FMI-for-
co-simulation; this wrapper must be provided by the slave simulator tool vendor. 

• wrap all specific parameters required by a co-simulation framework in an implementation exposing 
the FMI-for-co-simulation; this wrapper will be loaded by the master simulator, and must be provided 
by the co-simulation tool vendor. 

2.1.2.3. Instantiation Sequence 

The purpose of this section is to describe in more details the instantiation sequence required to remotely 
load an FMU instance after calling the fmiInstantiateSlave. 

In the following scenario, the co-simulation framework has already been provided with the component-
connection graph and the deployed location of FMU instances. The end result is to instantiate each FMU 
instance locally or remotely. 

1. 

2. 

3. 

The master simulator loads the local FMU proxy, that is, the FMI wrapper (master adapter) provided 
by the co-simulation framework. 

The co-simulation framework sends an instruction to the remote application server to load a specific 
FMU instance. 

The remote application server selects the correct instantiation method. Two alternatives are possible: 

• The FMU is composed of a shared library that includes model and solver in a compiled form. The 
FMU shared library is directly loaded with the correct FMU instance identifier. 
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• The FMU represents a tool coupling. The MIME-type of the slave simulator is used to select the 
correct FMI wrapper provided by the slave simulator tool vendor. 

4. The master simulator and slave simulator can now communicate over the FMI-for-co-simulation API. 

2.2. Numerical Co-Simulation Computation Flow 

Co-simulation is a simulation with more than one simulation tools which exchange intermediate results 
(variables, values, information) during simulation. 

A simulation tool (simulator) is a tool (algorithm, executable) that computes a model’s behavior, which 
is called simulation. In the computational sense a simulation is an autonomously running process. FMI 
for Co-Simulation is restricted to: 

• All calculated values  are time dependent functions within an a priori defined time interval )(tv

start stopt t t≤ ≤ . 

• All calculations (simulations) are carried out time increasing in general. The actual time t  is running 

step by step from  to . A tool may have the property to be able to repeat the simulation of 

parts of or the whole time interval . 

startt stopt

],[ stopstart tt ],[ stopstart tt

• After simulation the interval  is covered by subintervals  with , , 

, . The subinterval length is called step size of the  step, . This 

step size is simulation tool internal. 

],[ stopstart tt ],[ 1+ii tt Ni ≤<0 1+< ii tt

starttt =0 stopN tt = ih thi iii tth −= +1

A simulation tool can be coupled, if it has the following properties: 

• The simulation tool can be given a time value , itc start i stopt tc t≤ ≤ . 

• The simulation can be interrupted when is reached. itc

• During the interrupted simulation the simulation tool can both receive values and send 

values . 

)( itcu

)( itcy

• During the interrupted simulation the simulation tool can be given a new time value , 

to simulate the time subinterval 

1+itc

1i i stotc tc t+≤ ≤ p 1i itc t tc +< ≤  

• The subinterval length is called step size of the  communication step, . In 

general, the communication step size can be positive, zero, but not negative. 

ihc thi iii tctchc −= +1

 

Figure 12: Data flow of a simulation tool at communication points 
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The item simulation tool in the sense of this description can be a huge variety of tools: a powerful 
simulator like AmeSim, Dymola, Simpack, SimulationX, … but also a C program, which reads data from 
a file without having its own solver. Within a system to be simulated many different tools should be able 
to interact. 

2.2.1. Master-Slave Structure 

Co-simulation is used to solve a coupled system by simulating each part with its own coupleable 
simulation tool. Once the system is established there exists a directed signal flow between the involved 
simulation tools. Therefore it is assumed that the signal flow between the coupled simulation tools is 
directed. The coupled simulation tools form a directed graph G the nodes of which are the simulation 
tools, and the directed lines describe the data flow.  

 

Figure 13: Example graph G of coupled simulation tools 

Instead of directly coupling, a master is assumed to be located between the single simulation tools which 
are now called slaves. Each arrow of the graph G is regarded as to go “through” the master.  

 

Figure 14: Master-Slave structure 

Slaves are assumed to communicate with the master only. In this description the interface between 
master and slave is defined.  
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The master itself can be involved in a higher order simulation environment serving as slave. On each 
level of such a nested master hierarchy the FMI for Co-Simulation can be applied. 

2.2.2. Basic Co-Simulation Computation Flow 

The slaves will have properties which influence the possible master algorithms, especially restrict them. 
The master has to select suitable algorithms. In this description the master algorithms will be neither 
defined nor standardized. Only the interface between master and slaves is to be defined. Nevertheless, 
a basic co-simulation flow is assumed: 

2.2.2.1. Initialization Sub-phase 

All simulation tools are prepared for starting the co-simulation. The communication links between master 
and slaves are established. The master receives the properties of the slaves. Additionally the master 
receives the connection graph G e.g. by user input. The master chooses the master algorithm based on 
the capabilities of the involved slaves as well as the connection graph G, and possibly user inputs. 

2.2.2.2. Simulation Sub-phase 

The master forces the slaves to simulate the time interval  by stepwise solving master 

subintervals (communication steps)  with 

],[ stopstart tt

],( 1+ii tctc Ni ≤<0 , , , . The 

subinterval length is called communication step size of the  step, . 

1+≤ ii tctc startttc =0 stopN ttc =

ihc thi iii tctchc −= +1

The boundary points of each subinterval are called communication points. It is allowed that 

the communication step size can be zero ( , iteration). In particular for the first simulation 

step and at an event (event iteration) a communication step size of zero length is appropriate, . 

1, +ii tctc

ihc ii tctc =+1

0=ihc

It depends on the master algorithm how the communication step size, and the communication points are 
chosen. The master algorithm itself uses both the slave properties, and the graph G. The communication 
points can be chosen by the master individually for each slave, and the master can start and stop each 
slave independently from other slaves.  

Before a subinterval is simulated, the slave receives its input values  and possibly derivatives with 

respect to time ( , , …) as well as the communication step size . After starting the slave 

simulation of the communication step  the master receives the slave output values  

and possibly derivatives with respect to time ( , , …). Furthermore, the slave status has to 

be transferred to the master. Especially if the slave simulation fails, further communication is necessary.   

)( itcu

)( itcu )( itcu ihc

],[ 1+ii tctc )( 1+itcy

)( 1+itcy )( 1+itcy

2.2.2.3. Shutdown Sub-phase 

By giving a closing information the master forces the slaves to stop. 

2.2.2.4. Summary of Transferred Information via FMI for Co-Simulation 

The interface between master and slave must be able to transfer the following information:  
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To be transferred  Direction When 
Properties of the slave To master Initialization sub-phase 
Status of the slave  To master After communication step  

Slave input values and derivatives 

(optional) 

)( itcu To slave Before communication step 

Slave output values  and derivatives 

(optional) 

)( 1+itcy To master After communication step and 
after initialization 

Control commands, at least 
- simulate communication step  

- finish simulation 

],[ 1+ii tctc
To slave At communication step 

 
Shutdown sub-phase 

 

The connection graph G which specifies the directed connection between inputs and outputs of the 
slaves is also needed by the master. The input of this graph G is not standardized in this document. The 
graph input can be achieved e.g. by a user input. 

All information regarding the (static) properties of slaves will be collected within XML-files. By reading 
the XML files the master gets the properties of the slaves. 

2.2.3. Master  

The tasks of the master are: 

Tasks to be done in the initialization sub-phase: 

• Ask the properties of the slaves. 

• Analyze the graph G. 

• Chose a master algorithm. 

In the simulation sub-phase the master provides subintervals for each slave. 

Before the slave simulation of a communication step  the master tasks are: ],[ 1+ii tctc

• Calculate the communication step size , as well as the communication step . ihc ],[ 1+ii tctc

• Calculate the slave input values and possibly their derivatives , , … )( itcu )( itcu )( itcu

• Transfer , , and possibly , , … to the slave. itc 1+itc )( itcu )( itcu )( itcu

• Start the slave to simulate the communication step . ],[ 1+ii tctc

• Wait for slave finishing. 

After the slave simulation of the communication step  the tasks are: ],[ 1+ii tctc

• Ask the status of the slave, interpret it. 

• Transfer  and possibly , , … to the master, if the communication step is 

calculated regularly, or after initialization. [adapt State Machine] 

)( 1+itcy )( 1+itcy )( 1+itcy

• Transfer additional information to the master, if the communication step is not calculated regularly, 
e.g. error messages, or an intermediate stop time 
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In the shutdown sub-phase after the complete simulation, or in special cases  

• Stop the complete simulation. 

2.2.4. Slave 

The tasks of the slave are: 

Tasks to be done in the initialization sub-phase: 

• Send the properties of the slave to the master. 

Before the simulation of a communication step  the tasks are: ],[ 1+ii tctc

• Stop, if stop command is received (shutdown sub-phase). 

• Receive , , and possibly derivatives , , … from the master. itc 1+itc )( itcu )( itcu )( itcu

• Simulate the communication step  after receiving the simulate-command. ],[ 1+ii tctc

• Transfer  and possibly derivatives , , … to the master, if the communication 

step is calculated regularly. 

)( 1+itcy )( 1+itcy )( 1+itcy

• Transfer additional information to the master, if the subinterval is not calculated regularly, e.g. error 
messages, or intermediate stop time. 

After the simulation of a subinterval  the tasks are: ],[ 1+ii tctc

• Wait for the next command. 

This roughly described communication is detailed in section 3. 

2.2.5. Example of Master Algorithm 

One of the simplest master algorithms is like this:  

• The communication step size is constant: . ihchci ∀=

• For all slaves the first input value is chosen by the master, e.g. . 0)( =starttu

• The input values  are transferred to all slaves as well as the communication step size . The 

slave simulation is started, and the resulting output values are transferred to the master. This 

is done for increasing  until  is reached. 

)( itcu hc

)( 1+itcy

i stopt

• At each communication point  the master distributes the received slave results  to the slave 

inputs according to the connection graph for the next communication step . 

itc )( itcy

)( itcu ],[ 1+ii tctc

The simplest way to use the input values by the slaves is to keep u constant during the slave simulation: 

 for all . )()( itcutu = 1+≤≤ ii tcttc

For this simple master algorithm case a pseudo code example is given in the next section. 
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More advanced master algorithms analyze the connection graph to elaborate an effective calling order 
for the slaves. The communication step size can be adapted, and if possible communication steps can 
be repeated to allow iterative master algorithms. 

 



 Functional Mock-up Interface for Co-Simulation 
 MODELISAR (ITEA 2 - 07006) 
 September 30, 2010 
 Page 22 of 57 

3. The Application Programming Interface 

The interface consists of two parts: 

• Co-Simulation Interface 
A set of C-functions for exchange of in/output values and status information. 

• Co-Simulation Description Schema 
The schema defines the structure and content of an XML-file. This file contains the “static” information 
concerning the model (dimensions, input/output variables…) and the simulator (capabilities, …) which 
is used to compute the model.  

3.1. The Co-Simulation Interface 

This chapter contains the interface description to access the in/output data and status information of a 
co-simulation slave from a C program.  

3.1.1. Platform Dependent Definitions ( fmiPlatformTypes.h) 

In order to simplify porting, no C types are used in the function interfaces, but the alias types defined in 
this section. All definitions in this section are provided in the header file “fmiPlatformTypes.h”1. 

 

typedef void* fmiComponent;

 This is a pointer to a co-simulation slave specific data structure. It contains all information 
needed by the slave to process the co-simulation. 

typedef unsigned int fmiValueReference;

 This is a handle to a (base type) variable value of the model. The handle is unique at least 
with respect to the corresponding base type (like fmiReal). All structured entities, like 
records or arrays, are “flattened” in to a set of scalar values of type fmiReal, fmiInteger 
etc. An fmiValueReference references one such scalar. The coding of 
fmiValueReference is a “secret” of the modeling environment that generated the model. 
The interface only provides access to variables via this handle. Extracting concrete 
information about a variable is specific to the used environment that reads the Model 
Variable File in which the value handles are defined. 

If a function in the following sections is called with a wrong fmiValueReference value 
(e.g. setting an output with an fmiSetReal(...) function call), then the function has to 
return with an error (fmiStatus = fmiError), i.e., the processing of the co-simulation 
must be terminated. 

typedef double      fmiReal   ;  // Real number (64 bits) 
typedef int         fmiInteger;  // Integer number (32 bits) 
typedef char        fmiBoolean;  // Boolean number (8 bit, 
                                 // two values: fmiFalse, fmiTrue) 
typedef const char* fmiString ;  // Character string (′\0′ terminated) 
                                 // UTF8 encoded 
#define fmiTrue  1 

                                                      
1 This file is identical to fmiModelTypes.h from Model Exchange 1.0. In the follow up version Model-Exchange will also use this 

file. 
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#define fmiFalse 0 

 These are the basic data types used in the interfaces of the C-functions. More data types 
might be included in future versions of the interface.  
If an fmiString variable is passed as input argument to a function and the string shall be 
used after the function has returned, the whole string must be copied (not only the pointer) 
and stored in the internal memory, because there is no guarantee for the lifetime of the 
string after the function has returned. 

3.1.2. Status Returned by Functions 

This section defines the “status” flag (an enumeration of type fmiStatus defined in file 

“fmiModelFunctions.h”) that is returned by all functions to indicate the success of the function call. 

 

typedef enum {fmiOK, 
              fmiWarning,  
              fmiDiscard, 
              fmiError, 
              fmiFatal, 
              fmiPending 
             } fmiStatus;

 Status returned by functions. The status has the following meaning

• fmiOK – all well 
• fmiWarning – there are things not quite right, but the computation can continue. 

Function “logger” was called in the model (see below) and it is expected that this 
function has shown the prepared information message to the user. 

• fmiDiscard – can be returned by fmiDoStep(...) or fmiGetSlaveStatus(..., 
fmiDoStepState,...). See section 3.2.2. Is returned also if the slave is not able to 
return the required status information. The master has to decide if the simulation run 
can be continued anyway. 

• fmiError – the slave encountered an error. If one of the functions (except 
fmiDoStep(...)) returns fmiError, the simulation cannot be continued and 
function fmiFreeInstance(...) must be called. Function “logger” was called (see 
below) and it is expected that this function has shown the prepared information 
message to the user. 

• fmiFatal – the slave is irreparably corrupted. Function logger was called (see 
below) and it is expected that this function has shown the prepared information 
message to the user. It is not possible to call any other function of the slave. 

• fmiPending – is returned if the slave executes the function in an asynchronous way. 
That means the slave starts to compute but returns immediately. The master has to 
call fmiGetStatus(..., fmiDoStepStatus) to find out, if the slave is ready. Can 
be returned only by the function fmiDoStep(...) and by fmiGetStatus (see 
section 3.2. 

 

3.1.3. Inquire Platform and Version Number of Header Files 

This section documents functions to inquire information about the header files used to compile its 
functions. 

const char* fmiGetTypesPlatform(); 
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 Returns the name of the set of (compatible) platforms of the “fmiTypes.h” header file 
which was used to compile the functions of the Model Exchange interface. The function 
returns a pointer to the static variable “fmiTypesPlatform” defined in this header file. The 
standard header file as documented in this specification has version “standard32” (so this 
function usually returns “standard32”). 

const char* fmiGetVersion(); 

 Returns the version of the implemented co-simulation interface functions. If a slave 
supports the interface as it is described in this document it has to return “1.0”. 

 

3.2. Creation and Destruction of Co-Simulation Slaves 

This section documents functions that deal with instantiation and destruction of co-simulation slaves.  
 

fmiComponent fmiInstantiateSlave(fmiString instanceName, fmiString fmuGUID, 
 fmiString fmuLocation, fmiString mimeType, 
 fmiReal timeout, fmiBoolean visible, 
 fmiBoolean interactive, 
 fmiCallbackFunctions functions,  
 fmiBoolean loggingOn) 

 Returns a new instance of a co-simulation slave. If a null pointer is returned, then 
instantiation failed. In that case, function “functions->logger” was called and detailed 
information is transferred given there. A slave can be instantiated many times. This function 
must be called successfully, before any of the following functions can be called. The slave 
has to perform all actions which are necessary before a simulation run starts (e.g. loading 
the model file, compilation...). 

Argument instanceName is a unique identifier for a given FMI Component instance. 
This instance identifier is used to identify a component within a co-simulation graph model, 
and can be used for logging messages. This argument cannot be null. 

Argument fmuGUID is used to check that the co-simulation description file is 
compatible with the model file used by the slave. It is a vendor specific globally unique 
identifier of the co-simulation description file. It is stored in the description file as attribute 
guide of fmiModelDescription (See section 3.5). The fmuGUID read from the co-simulation 
description file and passed to fmiInstantiateSlave must be identical to the one stored 
in the used model (e.g., it is a “fingerprint” of the relevant information stored in the 
description file), otherwise the model and the description file are not consistent to each 
other. This argument cannot be null. 

Argument fmuLocation is an URI according to the ietf RFC3986 syntax to indicate 
the access path to the FMU archive. The following protocols must be understood: 
(Mandatory) file:// (Optional) http(s):// ftp:// (Reserved) ‘fmi://’ for fmi for PLM.  

Argument mimeType represents the MIME type (ietf RFC 2045, 2046, 2047, 2048, 
2049) of the ‘simulator’, e.g., ‘application/x-<simulator name>’, ‘application/x-
fmu-openmodelica’. If the FMU contains a shared library, i.e., Model exchange + solver, 
the following mime-type should be used: ‘application/x-fmu-sharedlibrary’.  This 
mimetype is typically used to help identify which simulator or FMI wrapper DLL is to be 
started for the specified FMU in the tool coupling scenario. 
Special mimetype could be ‘application/x-fmu-modelica’ to be used by any modelica 
simulators. This argument cannot be null. 
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Argument timeout is a communication timeout value in milli-seconds to allow inter-
process communication to take place. A timeout value of 0 indicates an infinite wait period. 

Argument visible indicates whether or not the simulator application window needed 
to execute a model should be visible, i.e., fmiFalse value indicates that the simulator is 
executed in batch mode, and fmiTrue value indicates that the simulator is executed in 
interactive mode. Use case: in interactive mode, it should be possible to explicitly 
acknowledge start of simulation / instantiation / initialization; acknowledgement is non-
blocking. 

Argument interactive indicates whether the simulator application must be manually 
started by the user, i.e., fmiFalse value indicates that the co-simulation tool automatically 
starts the simulator application and executes the model referenced in the model description, 
and fmiTrue value indicates that the simulator indicates that the simulator application 
must be manually started by the user. 

Argument functions provides callback functions to be used from the model functions 
to utilize resources from the environment (see type fmiCallbackFunctions below). 

If loggingOn=fmiTrue, debug logging is enabled. If loggingOn=fmiFalse, debug 
logging is disabled. 

typedef struct { 
 void (*logger)(fmiComponent c, fmiString instanceName,  
  fmiStatus status, fmiString category, 
  fmiString message, ...); 
 void (*stepFinished) (fmiComponent c, fmiStatus status); 

 void* (*allocateMemory)(size_t nobj, size_t size); 
 void  (*freeMemory)    (void* obj); 
 } fmiCallbackFunctions; 
 The struct contains pointers to functions provided by the environment to be used by the 

slave. In the default fmiFunctions.h file, typdefs for the function definitions are present to 
simplify the usage. This is non-normative. The functions have the following meaning: 

Function logger: 
Pointer to a function that is called in the model, usually if the model function does not 
behave as desired. If “logger” is called with “status = fmiOK”, then the message is a 
pure information message. “instanceName” is the instance name of the model that calls 
this function. “category” is the category of the message. Usually, “category” is only used 
for debug messages in order that the environment can filter the debug messages to be 
shown. The meaning of “category” is defined by the modeling environment that generated 
the model code. Argument “message” is provided in the same way and with the same 
format control as in “printf(...)”. In the simplest case, this function might only print the 
message. It might also just store the message in a stack of buffers and via options in the 
environment the printing of the messages is controlled. 
The logger function will append a line break to each message when writing messages after 
each other to a terminal or file (the messages may also be shown in other ways, e.g. as 
separate text-boxes in a GUI). The caller may include line-breaks (using "\n") within the 
message, but should avoid trailing line breaks. 

Variables are referenced in a message with “#<Type><ValueReference>#” where 
<Type> is “r” for fmiReal, “i” for fmiInteger, “b” for fmiBoolean and “s” for fmiString. 
If character “#”shall be included in the message, it has to be prefixed with “#”, so “#” is an 
escape character. Example: 

A message of the form 
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“#r1365# must be larger than zero (used in IO channel ##4)” 
might be changed by the environment to 

“body.m must be larger than zero (used in IO channel #4)” 
if “body.m” is the name of the fmiReal variable with fmiValueReference = 
1365. 

Function stepFinished: 
Optional call back function to signal if the computation of a communication step is 
finished. A NULL pointer can be provided. In this case fmiDoStep has to be carried 
out synchronously. If a pointer to a function is provided, it must be called after a 
completed communication step. 

Function allocateMemory: 
Pointer to a function that is called in the model if memory needs to be allocated. It is not 
allowed that the model uses malloc, calloc or other memory allocation functions. One 
reason is that these functions might not be available for embedded systems on the target 
machine. Another reason is that the environment may have optimized or specialized 
memory allocation functions. allocateMemory returns a pointer to space for a vector of 
nobj objects, each of size “size” or NULL, if the request cannot be satisfied. The space is 
initialized to zero bytes (a simple implementation is to use calloc from the C standard 
library). 

Function freeMemory: 
Pointer to a function that must be called in the model if memory is freed that has been 
allocated with allocateMemory. If a NULL pointer is provided as input argument obj, 
the function shall perform no action (a simple implementation is to use free from the 
C standard library; in ANSI C89 and C99, the null pointer handling is identical as 
defined here). 
The functions allocateMemory and freeMemory can be ignored by slaves. This is 
signalled by setting the capability flag canNotUseMemoryManagementFunctions. 
 

fmiStatus fmiInitializeSlave(fmiComponent c, fmiReal tStart, 
                             fmiBoolean StopTimeDefined, fmiReal tStop); 
 Informs the slave that the simulation run starts now. 

The arguments tStart and tStop can be used to check whether the model is valid within 
the given boundaries or to allocate memory which is necessary for storing results. If the 
master tries to compute past tStop the slave returns fmiError. 
 

fmiStatus fmiTerminateSlave(fmiComponent c); 
 Is called by the master to signal the slave the end of the co-simulation run. 

fmiStatus fmiResetSlave(fmiComponent c); 
 Is called by the master to reset the slave after a simulation run. Before starting a new run, 

fmiInitializeSlave is to be called. 

void fmiFreeSlaveInstance(fmiComponent c); 
 Disposes the given instance, unloads the loaded model, and frees all the allocated memory 

and other resources that have been allocated by the functions of the co-simulation 
interface. 

fmiStatus fmiSetDebugLogging(fmiComponent c, fmiBoolean loggingOn);  

 If loggingOn=fmiTrue, debug logging is enabled, otherwise it is switched off. 
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3.2.1. Transfer of input / output values and parameters 

Input and output variables are identified with a variable handle called “value reference”. The handle is 
defined in the co-simulation description file (as “ValueReference” in element “ScalarVariable”). It is a 
unique reference within each Slave instance for a scalar variable with respect to its base type (like 
fmiReal) and is internal information of the slave. 

 

fmiStatus fmiSetReal   (fmiComponent c, const fmiValueReference vr[],  

 size_t nvr, const fmiReal value[]); 
fmiStatus fmiSetInteger(fmiComponent c, const fmiValueReference vr[],  

 size_t nvr, const fmiInteger value[]); 
fmiStatus fmiSetBoolean(fmiComponent c, const fmiValueReference vr[],  

 size_t nvr, const fmiBoolean value[]); 
fmiStatus fmiSetString (fmiComponent c, const fmiValueReference vr[],  

 size_t nvr, const fmiString value[]); 

 Set values of inputs. Argument vr is a vector of nvr value references that define the 
variables that shall be set. Argument value is a vector with the actual values of these 
variables. The slave has to copy the content of the value array if it needs them after 
returning. The master may deallocate the array. 

Restrictions on using the fmiSetXXX functions (see also section 3.3): 

1. These functions can only be called after calling fmiInstantiateSlave(…) and 
before fmiFreeSlave(...). 

2. Besides (1), they can always be called on inputs (ScalarVariable.Causality = “input”). 
3. For parameters (ScalarVariable.causality = “input” and ScalarVariable.variability = 

“parameter”) the functions can only be called between fmiInstantiateSlave(...) 
and fmiInitializeSlave(...). 

If no set function is called for a variable it is initialized by the slave to its default value. 
 

In order to enable the slave to interpolate the continuous real inputs between communication steps the 
derivatives of the inputs with respect to time can be provided. To allow higher order interpolation also 
higher derivatives can be set. Whether a slave is able to interpolate and therefore needs this information 
is provided by the capability canInterpolateInputs. 

 

fmiStatus fmiSetRealInputDerivatives(fmiComponent c,  
 const fmiValueReference vr[],  

 size_t nvr, const fmiInteger order[], 
 const fmiReal value[]); 

 Sets the n-th time derivative of real input variables. Argument “vr” is a vector of value 
references that define the variables whose derivatives shall be set. The array “order” 
contains the orders of the respective derivative (1 means the first derivative, 0 is not 
allowed). Argument “value” is a vector with the values of the derivatives. “nvr” is the 
dimension of the vectors. 
Restrictions on using the function are the same as for the fmiSetReal function.  

 

Inputs and their derivatives are set with respect to the beginning of a time step.  

Output variables are handled in the same way using the following functions: 
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fmiStatus  fmiGetReal( fmiComponent c, const fmiValueReference vr[],  

  size_t nvr, fmiReal value[]); 
fmiStatus fmiGetInteger( fmiComponent c, const fmiValueReference vr[], 

  size_t nvr, fmiInteger value[]); 
fmiStatus fmiGetBoolean( fmiComponent c, const fmiValueReference vr[], 

  size_t nvr, fmiBoolean value[]); 
fmiStatus  fmiGetString( fmiComponent c, const fmiValueReference vr[],  

  size_t nvr, fmiString value[]); 

 Get actual values of variables by providing the variable handles. 
 

To allow interpolation/approximation of the real output variables between communication steps (if they 
are used as inputs for other slaves) the derivatives of the outputs with respect to time can be read. 
Whether the slave is able to provide the derivatives of outputs is given by the unsigned integer capability 
flag MaxOutputDerivativeOrder. It delivers the maximum order of the output derivative. If the actual 
order is lower (because the order of integration algorithm is low), the retrieved value is 0. 

Example: If the internal polynomial is of order 1 and the master inquires the second derivative of an 
output, the slave will return zero. 

The derivatives can be retrieved by: 

 

fmiStatus fmiGetRealOutputDerivatives (fmiComponent c,  
 const fmiValueReference vr[],  

 size_t nvr, const fmiInteger order[],
 fmiReal value[]); 

 Retrieves the n-th derivative of output values. Argument “vr” is a vector of “nvr” value 
references that define the variables whose derivatives shall be retrieved. The array “order” 
contains the order of the respective derivative (1 means the first derivative, 0 is not allowed). 
Argument “value” is a vector with the actual values of the derivatives.  
Restrictions on using the function are the same as for the fmiGetReal function. 

 

The returned outputs correspond to the current slave time. E. g. after a successful fmiDoStep(...) the 
returned values are related to the end of the time step. 

This standard supports polynomial interpolation and extrapolation as well as more sophisticated signal 
extrapolation schemes like rational extrapolation, see Appendix D.  

3.2.2. Computation 

The computation of time steps is controlled by the following function. 

 

fmiStatus fmiDoStep( fmiComponent c, fmiReal currentCommunicationPoint, 
 fmiReal communicationStepSize, fmiBoolean newStep); 

 The computation of a time step is started.  
The parameter currentCommunicationPoint is the current communication point of the master 
(tci). Parameter communicationStepSize is the communication step size. If the master 
carries out an event iteration the parameter communicationStepSize is zero. The 
Parameter newStep is fmiTrue if the last communication step is accepted by the master 
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and a new communication step is started.  
Depending on the internal state of the slave and the last call of fmiDoStep(...) the slave 
has to decide which action is to be done before the step is computed. 
The function returns: 

• fmiOK -  if the communication step was computed successfully until its end. 
• fmiDiscard – if the slave computed successfully only a subinterval of the 

communication step. The master can call the appropriate fmiGetXXXStatus functions 
to get further information. 

• fmiError – the communication step could not be carried out at all. The master can try 
to repeat the step with other input values and/or an other communication step size. 

• fmiPending – is returned if the slave executes the function in an asynchronous way. 
That means the slave starts the computation but returns immediately. The master has 
to call fmiGetStatus(...,fmiDoStep,...) to find out, if the slave is ready. 
fmiCancelStep(...) can be called to cancel the current computation. It is not 
allowed to call any other function during a pending fmiDoStep(…). 

 
fmiStatus fmiCancelStep(fmiComponent c); 
 Can be called if fmiDoStep returned fmiPending in order to stop the current asynchronous 

execution. The master calls this function if e.g. the co-simulation run is stopped by the user 
or one of the slaves. Afterwards it is only allowed to call the functions fmiTerminateSlave, 
fmiResetSlave, or fmiFreeSlaveInstance. 

 
It depends on the capabilities of the slave which parameter constellations and calling sequences are allowed 
(see 3.5.1). 

3.2.3. Retrieving of Status Information from the Slave 

Status information is retrieved from the slave by the following functions: 

 

fmiStatus  fmiGetStatus( fmiComponent c, const fmiStatusKind s,  
  fmiStatus* value); 
fmiStatus  fmiGetRealStatus( fmiComponent c, const fmiStatusKind s,  
  fmiReal* value); 
fmiStatus  fmiGetIntegerStatus( fmiComponent c, const fmiStatusKind s, 
  fmiInteger* value); 
fmiStatus  fmiGetBooleanStatus( fmiComponent c, const fmiStatusKind s, 
  fmiBoolean* value); 
fmiStatus  fmiGetStringStatus( fmiComponent c, const fmiStatusKind s, 
  fmiString* value); 

 Informs the master about the actual status of the simulation run. Which status information is 
to be returned is specified by the argument fmiStatusKind. It depends on the capabilities 
of the slave which status information can be given by the slave (see 3.5.1). If a status is 
required which cannot be retrieved by the slave it returns fmiDiscard. 

typedef enum {fmiDoStepStatus, 
  fmiPendingStatus, 
  fmiLastSuccessfulTime, 
 } fmiStatusKind; 
 Defines which status is inquired.  

 

The following status information can be retrieved from a slave: 
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Status Type of retrieved 
value

Description

fmiDoStepStatus fmiStatus Can be called when the fmiDoStep function returned 
fmiPending. The function delivers fmiPending if the 
computation is not finished. If the computation is 
finished meanwhile the function returns the result of 
the asynchronous executed fmiDoStep(...) call.

fmiPendingStatus fmiString Can be called when the fmiDoStep function returned 
fmiPending. The function delivers a string which 
informs about the status of the currently running 
asynchronous fmiDoStep computation.

fmiLastSuccessfulTime fmiReal Returns the time until the last communication step was 
computed successfully. Can be called after 
fmiDoStep(...) returned fmiDiscard.

...   
 

3.3. State Machine of Calling Sequence from Master to Slave 

The following state machine demonstrates the possible calling sequence. The following abbreviations 
are used: 

• fmiFunc(...) is one of the functions fmiGetVersion(), fmiGetTypesPlatform(), 
fmiSetDebugLogging(...) 

• XXX is one of Real, Integer, Boolean, String 

• ts, tm, h are internal variables of the slave 
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Figure 15: State-machine for the calling sequence of co-simulation interface C-functions  

3.4. Pseudo Code Example 

In the following example, the usage of the FMI functions is sketched in order to clarify the typical calling 
sequence of the functions in a simulation environment. The example is given in a mix of pseudo-code 
and “C”, in order to keep it small and understandable. We consider two slaves. Both have one 
continuous real input and one continuous real output which are connected in the following way: 

 

Figure 16: Connection graph of the slaves 

We assume no algebraic dependency between input and output of each slave. The slaves do not support 
asynchronous execution of fmiDoStep(...). The code demonstrates the simplest master algorithm as 
shown in section 2.2.5. 

• Constant communication step size. 

• No repeating of communication steps. 

• The slaves do not support asynchronous execution of fmiDoStep.  

The error handling is implemented in a very rudimentary way. 
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////////////////////// 
//Initialization sub-phase 
 
//Instantiate both slaves 
fmiComponent s1 = fmiInstantiateSlave("Tool1", "", "Model1", "", ...); 
fmiComponent s2 = fmiInstantiateSlave("Tool1", "", "Model2", "", ...); 
// tStart needs to be between startTime and stopTime from the XML-file 
tStart = 0; 
// tStop needs to be between startTime and stopTime from the XML-file 
tStop = 10; 
// communication step size 
h = 0.01; 
 
//Initialize slaves 
status = fmiInitializeSlave(s1, tStart, fmiTrue, tStop); 
if(status == fmiOK) 
 ret = fmiInitializeSlave(s2, tStart, fmiTrue, tStop); 
 
////////////////////// 
//Simulation sub-phase 
 
//Current master time 
tc = tStart; 
 
while((tc < tStop) && (status == fmiOK)) 
 //retrieve outputs 
 fmiGetReal(s1, ..., 1, &y1); 
 fmiGetReal(s2, ..., 1, &y2); 
 //set inputs 
 fmiSetReal(s1, ..., 1, &y2); 
 fmiSetReal(s2, ..., 1, &y1); 
  
 //call slaves 
 status = fmiDoStep(s1, tc, h, fmiTrue); 
 if(status == fmiOK) 
  status = fmiDoStep(s2, tc, h, fmiTrue); 
  
 //increment master time 
 tc+=communicationStepSize; 
} 
 
////////////////////// 
//Shutdown sub-phase 
if (status == fmiOK) 
{ 
 fmiTerminateSlave(s1); 
 fmiTerminateSlave(s1); 
 //Reset slaves 
 fmiResetSlave(s1); 
 fmiResetSlave(s2); 
} 
 
if (status != fmiFatal) 
{ 
 //cleanup slaves 
 fmiFreeSlaveInstance(s1); 
 fmiFreeSlaveInstance(s2); 
} 
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3.5. The Co-Simulation Description Schema 

The FMI for co-simulation reuses the XML schema encoding conventions and data types as defined by 
the FMI for model exchange (in section 3). 

However, there are two important differences: 

The “fmiModelDescription.xsd” definition has been modified to include an Implementation element. 1. 

2. An additional schema file “fmiImplementation.xsd” has been added to include the elements required 
to support co-simulation description. 

The following sections describe the amendments made to the fmiModelDescription schema and 

detailed information related to the co-simulation implementation element (fmiImplementation). 

3.5.1. Description of a Model for Co-Simulation (fmiModelDescription) 

The FMI for Co-Simulation modifies the model description format of FMI for Model Exchange, by 
appending an Implementation element; the reader is referred to section 3.1 of FMI for Model 
Exchange specification to understand the details of the top level description. 

 

The Implementation element is optional; if present, the import tool should understand the model 

description as applying to co-simulation. As a consequence, the import tool must select the proper FMI 
API. The “attributes” part of fmiModelDescription is not changed. 
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3.5.2. Definition of an Implementation 

An ‘Implementation’ in the co-simulation context can be either CoSimulation_Tool or 

CoSimulation_StandAlone. 

The main difference between these implementations relates to the existence of the original model. A tool 
execution requires that the original tool is available to be executed in co-simulation mode; in a stand-
alone execution, the slave is completely contained inside the FMU in source code or binary format 
(shared library). 

 

The Implementation element can have one of the element choices CoSimulation_StandAlone or 

CoSimulation_Tool, which are described in the following table. 

Name Description 

CoSimulation_StandAlone This element is used when “FMI for Co-Simulation” code 
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generators are used to transfer models into compilable source 
code. The slave is available either in source code form or 
binary format (shared library or executable). 

CoSimulation_Tool This element is used when a slave simulation tool implements 
the “FMI for Co-Simulation” API and models can be directly 
executed without code generation being required. 

The Element CoSimulation_StandAlone consists of a Capabilities element, the element 

CoSimulation_Tool consists of a sequence of Capabilities and Model elements. 

The elements Capabilities and Model are described in the following sections. 

3.5.2.1. Capability Flags 

The Capabilities element is based on the type definition fmiCoSimulationCapabilities, which is 
defined as follows. 

 

The Capabilities element can contain the following optional attributes.  
 

Attribute Name Description
canHandleVariableCommunicationStepSize The slave can handle variable communication 

step size. The communication step size 
(parameter communicationStepSize of 
fmiDoStep(...) ) has not to be constant for 
each call. 

canHandleEvents The slave supports event handling during co-
simulation. The communication step size 
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(parameter communicationStepSize of 
fmiDoStep(...)) can be zero. 

canRejectSteps This flag indicates the slave’s capability to 
discard and repeat a communication step. The 
parameter newStep of fmiDoStep(...) can 
be fmiFalse. The parameter 
currentCommunicationTime can be constant 
in consecutive fmiDoStep(...) calls. 

canInterpolateInputs The slave is able to interpolate continuous 
inputs. Calling of 
fmiSetRealInputDerivatives(...) has an 
effect for the slave. 

maxOutputDerivativeOrder The slave is able to provide derivatives of 
outputs with maximum order. Calling of 
fmiGetRealOutputDerivatives(...) is 
allowed. 

canRunAsynchronuously This flag describes the ability to carry out the 
fmiDoStep(...) call asynchronously. 

canSignalEvents If a slave is able to provide information about 
events during a communication step, this flag 
has to be set true.  

canBeInstantiatedOnlyOncePerProcess This flag indicates cases (especially for 
embedded code), where only one instance per 
FMU is possible  
(multiple instantiation is default = false; if 
multiple instances are needed, the FMUs must 
be instantiated in different processes). 

canNotUseMemoryManagementFunctions If true, the slave uses its own functions for 
memory allocation and freeing only. The 
callback functions allocateMemory and 
freeMemory given in fmiInstantiateSlave 
are ignored. 

 

All flags are optional. The flags have the following default values. 

• boolean: false 

• unsignedInt: 0 

3.5.2.2. Model description 

The Element Model is based on the type definition fmiCoSimulationModel, which is defined as 
follows. 
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Attribute Name Description
entryPoint The URI of the model to be executed by the slave simulator. Examples of 

URIs are: 
• “fmu://resources/model/controller.mdl” refers to a 

model within the FMU archive. 
• “file://c:/model/controller.mdl” refers to a model 

located externally to the FMU archive. 
• “http://myserver:6456/models/controller.mdl” refers to 

a model accessible via a web server. 
 

manualStart Indicates whether the model should be manually loaded and started by the 
user on the slave simulator. By providing this flag, the master tool can 
choose the adequate start sequence on the master side. By default, this 
flag is set to false. 
 

type A mime type that indicates the needed simulator and FMI wrapper for a 
simulator that needs to be started to instantiate an FMI Component. 
 

In some cases, several model files may be transported, e.g. calibration files. In a tool coupling scenario, 
the master tool may need to know, which model needs to be opened to get the top level system. 

Element Model contains an optional sequence of File elements. Each File element is used to 

represent an additional file required by the slave simulator. 
Attribute Name Description
file The URI of a file needed by the slave simulator to execute the native 

model. An example of file URI entry is 
“fmu://resources/model/myReferencedModel.mdl” that refers to a 
model within the FMU archive. 
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4. Model Distribution  

The major part of this section is directly taken from the specification document FMI for Model Exchange, 
as FMI for Co-Simulation builds upon concepts of the previous. Additional remarks will point out, where 
changes were made specifically for the co-simulation case. 

An FMU description consists of several files. An FMU may be distributed in textual and/or in binary 
format. All relevant files are stored in a zip-file with a pre-defined structure. The name of the zip-file must 
be identical to the “modelIdentifier” stored as xml-attribute in the Model Description File and used as 
defined symbol MODEL_IDENTIFIER with header file fmiFunctions.h. The extension of the zip-file 
must be “.fmu”, e.g., “HybridVehicle.fmu”. The compression method used for the zip-file must be “deflate” 
(most free tools, e.g. zlib, offer only the common compression method "deflate").  

Every FMU is distributed by its own zip-file. This zip-file has the following structure:  

// Structure of zip-file of an FMU  
modelDescription.xml  // Description of model (required file)  
model.png  // Optional image file of model icon  
documentation  // Optional directory containing the model documentation  
 _main.html  // Entry point of the documentation  
 <other documentation files>  
sources  // Optional directory containing all C-sources  
  // all needed C-sources and C-header files to compile and link the model  
  // with 
binaries  // Optional directory containing the binaries  

exception of: fmiPlatformTypes.h and fmiFunctions.h  

 win32  // Optional binaries for 32-bit Windows  
  <modelIdentifier>.dll  // DLL of the model interface implementation  
  // Optional object
  VisualStudio8  // Binaries for 32-bit Windows generated with  

 Libraries for a particular compiler  

   // Microsoft Visual Studio 8 (2005)  
  <modelIdentifier>.lib  // Binary libraries  
  gcc3.1  // Binaries for gcc 3.1  
    ... 
 win64  // Optional binaries for 64-bit Windows  

 

   ...  
 linux32  // Optional binaries for 32-bit Linux  
   ...  
 linux64  // Optional binaries for 64-bit Linux  
   ...  
resources  // Optional resources needed by the model  
 < data in model specific files which will be read during initialization > 
  

The FMU must be distributed with at least one implementation, i.e., either sources or one of the binaries 
for a particular machine1. It is also possible to provide the sources and binaries for different target 
machines altogether in one zip-file. The names “win32”, “win64”, “linux32”, “linux64” are standardized, as 
well as the names “VisualStudioX” and “gccX” that define the compiler with which the binary has been 
generated. Further names can be introduced by vendors. Typical scenarios are to provide binaries only 
for one machine type (e.g. on the machine where the target simulator is running and for which licenses 
of run-time libraries are available) or to provide only sources (e.g. for translation and download for a 
particular micro-processor). If run-time libraries cannot be shipped due to licensing, special handling is 
needed, e.g., by providing the run-time libraries at appropriate places by the receiver.  

                                                      
1 Note that the implementation can be either according to FMI for Model Exchange or FMI for Co-Simulation. For the second, see 

section 3.5.2 for details. Appendix B gives an outlook of a possible future generalization. 
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FMI for Co-Simulation provides the means for two kinds of implementation: CoSimulation_Tool and 

CoSimulation_StandAlone. In the first scenario a slave tool specific wrapper dll has to be provided as 
the binary, in the second a compiled or source code version of the model with its solver is stored (see 
section 2.1 for details). 

In directory “resources”, additional data can be provided in model specific formats, typically for tables 

and maps used in the model. This data must be read into the model at the latest during initialization 
(fmiInitializeSlave). The actual file names in the zip-file to access the data files can either be hard-
coded in the generated model functions, or the file names can be provided as string parameters via the 
fmiSetString function (see Functional Mock-up Interface for Model Exchange MODELISAR (ITEA 2 - 07006) 

January 26, 2010 Page 41 of 56).  

In the case of a co-simulation implementation of CoSimulation_Tool type, the “resources“ directory can 

contain the model source file in the tool specific file format. 

Note that the header files fmiPlatformTypes.h and fmiFunctions.h are not included in the FMU 
due to the following reasons:  

fmiPlatformTypes.h makes no sense in the “sources” directory, because if sources are provided, 

then the target simulator defines this header file and not the FMU. This header file is not included in the 
“binaries” directory, because it is implicitly defined by the platform directory (e.g. win32 for 32-bit 
machine or linux64 for 64-bit machine). Furthermore, the version that was used to construct the FMU can 
also be inquired via function fmiGetModelTypesPlatform().  

fmiFunctions.h is not needed in the “sources” directory, because it is implicitly defined by atttribute 

fmiVersion in file modelDescription.xml. Furthermore, in order that the C-compiler can check for 

consistent function arguments, the header file from the target simulator should be used when compiling 
the C-sources. It would therefore be counter productive (unsafe), if this header file would be present. 
This header file is not included in the “binaries” directory, since this header file was already utilized to 

build the target simulator executable. Via attribute fmiVersion in file modelDescription.xml or via 

function call fmiGetVersion() the version number of this header file used to construct the FMU can be 
deduced.  
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Appendix B Features for Future Versions 

In this appendix, features are summarized that are already known to be missing and might be added in a 
future release. 

 
Event Handling 

Event Handling is not supported at the moment. Modelisar SWP202 will work on event handling 
algorithms. Useful extensions could be: 

 

fmiEventHappened fmiBoolean Delivers fmiTrue if during computation of the last 
communication step a discontinuity happened, that affects an 
output. Is delivered only if the capability flag 
canSignalEvents is set.

fmiEventTime fmiReal Time of the event, happened during the last communication 
step. Is delivered only if the capability flag canSignalEvents 
is set.

 

Other extensions are e.g. error criteria of the slave which can be used for sophisticated co-simulation 
master algorithms. 

 
Efficient Handling of Time Events 

We postpone the efficient handling of time events in order to avoid overloading of the discussion. 
Efficient time event handling should be developed together with the FMI ME. 

The efficient and numerical robust handling of time events is essential to include controller algorithms in 
a co-simulation scenario. At first we consider time events with a constant sample rate. The number of 
sample rates is defined in the slave description file. 

 

fmiStatus fmiGetSampleRates(fmiComponent c, const fmiSampleRateInfo st[]); 
 Retrieves the sample rates of the slave. Parameter “st” is an array of fmi 

fmiSampleRateInfo structures. The dimension of the array has to be consistent with the 
number of sample rates given in the slave description file. The function can be called after 
fmiLoadModel and must be called before the simulation run is started.  

typedef struct { 
  fmiInteger expTimeBase; 
  fmiUnsigned startTime; 
  fmiUnsigned sampleRate; 
 } fmiSampleRateInfo; 

 This structure contains the information about one sample rate of the slave. To avoid 
inaccuracies an integer representation is used. The sample rate and start time are defined 
by integer multipliers of a time base. The time base is given by its exponent of base 10. 

 This structure contains the information about one sample rate of the slave: 

• expTimeBase: is the exponent of 10 of the time base in seconds 
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• startTime: defines the occurrence of the first sample hit 
• startTime: defines the sample rate 
 

The startTime counts from the start time of the simulation run. It is defined by the parameter 
tStart of fmiInitializeSlave(...). 

A sample rate of 10 ms is e.g. given by: 

• base=-3 
• sampleRate=10 

or: 

• base=-4 
• sampleRate=1 

 

Remark: In the Modelica Language Design group a discussion about integer time 
representation (at least for a numerical robust definition of time events) is going on. Here 
we think about using (similar to SPICE or VHDL) special characters (‘n’… nano, ‘u’… mikro, 
‘m’... mili, ...) of the time base. This would be a possibility too. 

Possibly we should consider how sample rates are specified in AUTOSAR. 
 

If the slave exposes at least one sample rate it has to be informed by the master when the sample time 
instance is achieved: 

 

fmiStatus setSampleTimeStatus(fmiComponent c, const fmiBoolean* s[]); 

 Informs the model if one of the sample times is reached. “s” is a boolean array. The 
dimension of the array has to be consistent with the number of sample rates given in the 
slave description file. If one of the sample time instances is reached the corresponding 
element in “s” is set to fmiTrue. 

Can be called by the master after an event step is signaled by a call of 
fmiSetBooleanStatus(s, fmiEvent, fmiTrue). 

 
Sample time instances are defined by: 
ts = startTime*10expTimeBase+i*sampleRate*10expTimeBase

(i=0,1...) 

 
Discarding and Repeating of Communication Steps 

If the slave sets the capability flag canRejectSteps to fmiTrue the master can use more sophisticated 
co-simulation algorithms which require the repeating of communication steps. Currently the master 
signals that by calling fmiDoStep with parameter newStep = fmiFalse. In this case the slave has to 
reject its last computed communication step and repeat the computation. 

This mechanism is not efficient for the following use case. If a master will only go forward, the slave 
should be informed about that. Otherwise it has to store its state at the beginning of each computation of 
a communication step, because the next fmiDoStep call could require a discarding of the last 
communication step. This could be time consuming. It would be better to have special functions for 



 Functional Mock-up Interface for Co-Simulation 
 MODELISAR (ITEA 2 - 07006) 
 September 30, 2010 
 Page 44 of 57 

storing and restoring several states of the slave, e.g.:   
 fmiSaveState(fmiComponent c, size_t index) 

 fmiRestoreState(fmiComponent c, size_t index)  

which can be called explicitly by the master. The parameter index identifies which state the slave has to 
restore. 

Also for usage of FMU's in training simulators (e.g. for nuclear power plants) an explicit save and restore 
mechanism could be useful. The training master (a human being) may want to have a snap shot at a 
particular time point in order to restart from this point at some other time instant. 
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Appendix C Further Examples for Simulator Coupling 

In the following, two further examples demonstrating the coupling of three simulators are given in a mix 
of pseudo-code and “C”. 

C.1 Example 1: Parallel simulation and input/output of different kinds 

The three slaves are connected in the following way: 

s[0] 

s[1] 

s[2] 

yr[0]

yi[0]

ur[0] 

ui[0] 

ur[1]yr[0] 

 

Figure 17: Connection graph of the slaves of example 1  

Simulator s[0] has one continuous real output yr[0], simulator s[1] has one continuous real output yr[0] 
and one integer output yi[0], and simulator s[2] has two real inputs ur[0], ur[1] and one integer input ui[0]. 
Simulators s[0] and s[1] have the same priority and there does not exist a cycle, so that both simulators 
can work in parallel. 

C.2 Example 2: Cycle (feedback) 

The three slaves are connected in the following way: 
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s[0] 

s[1] s[2] 

yr[0] 

yr[0] 

ur[0] 

ur[0] 

ur[0]yr[1]

 

Figure 18: Connection graph of the slaves of example 2  

Simulator s[0] has one continuous real input ur[0] and one continuous real output yr[0], simulator s[1] 
has one continuous real input ur[0] and two continuous real outputs yr[0] and yr[1], and simulator s[2] 
has one real inputs ur[0]. Simulators s[0] and s[1] have the same priority but this time a cycle exists, so 
that both simulators cannot work in parallel. 

C.3 Pseudo Code for both examples 

The code demonstrates a more elaborate master algorithm than shown in section 2.2.5. 

• Constant communication step size. 

• Repeating of communication steps / iteration. 

• Parallelization / multiple threads 

The error handling is again implemented in a very rudimentary way. 

 

//////////////////////// 
// Initialization sub-phase 
 
// Graph structure (taken from configuration file) 
// Number of slaves 
nsim = 3; 
// Priority of slaves 0...nsim-1 
priority[0] = 0; 
priority[1] = 0; 
priority[2] = 1; 
// At priority i do cycles exist? yes: cycles[i] = 1, no: cycles [i] = 0 
cycles[1] = 0; 
#ifdef Example1 
cycles[0] = 0; 
#else 
cycles[0] = 1; 
#endif 
// Read the ModelDescription XML files of the FMUs 
// Instantiate slaves 
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for (i = 0; i < nsim; ++i) { 
 s[i]->component = fmiInstantiateSlave("Instance_i", "", "FMU_i.dll", 
  "",...); 
 if (s[i]->component == NULL) 
  // error 
} 
// tStart needs to be between startTime and stopTime from the XML-file 
tStart = 0; 
// tStop needs to be between startTime and stopTime from the XML-file 
tStop = 10; 
// Communication step size 
h = 0.01; 
// Number of inputs and outputs of slave s[i] (taken from XML-file), 
// n[u|y][r|i|b|s] is the number of components of [real|integer|boolean|string] 
// [input|output] array [u|y][r|i|b|s] 
#ifdef Example1 
s[0]->nyr = 1; 
s[1]->nyr = 1; 
s[1]->nyi = 1; 
s[2]->nur = 2; 
s[2]->nui = 1; 
#else 
s[0]->nur = 1; 
s[0]->nyr = 1; 
s[1]->nur = 1; 
s[1]->nyr = 2; 
s[2]->nur = 1; 
#endif 
 
// Initialize slaves 
for (i = 0; i < nsim; ++i) { 
 status = fmiInitializeSlave(s[i]->component, tStart, fmiTrue, tStop); 
 if (status != fmiOK) 
  // error 
} 
 
//////////////////// 
// Simulation sub-phase 
 
// Current master time 
tc = tStart; 
 
while ((tc < tStop) && (status == fmiOK)) { 
 // Zero communication step size at first step and for event iteration 
 if (firstStep || event) 
  hStep = 0; 
 else 
  hStep = communicationStepSize; 
 // Call slaves regarding priority 
 for (prior = 0; prior < maxPriority; ++prior) { 
  if (cycles[prior] == 0) { // no cycle, parallel execution of slaves 
   // Call slaves of priority prior 
   for (i = 0; i < nsim; ++i) 
    if (priority[i] == prior) { 
     // Open thread 
     // Set inputs for slaves of priority prior 
     fmiSetReal(s[i]->component, ..., s[i]->nur, 
      s[i]->ur); 
     fmiSetInteger(s[i]->component, ..., s[i]->nui, 
      s[i]->ui); 
     status = fmiDoStep(s[i]->component, tc, hStep, 
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      fmiTrue); 
     if (status == fmiError || status == fmiFatal) 
      // error 
     // Retrieve outputs for slaves of priority prior 
     fmiGetReal(s[i]->component, ..., s[i]->nyr, 
      s[i]->yr); 
     fmiGetInteger(s[i]->component, ..., s[i]->nyi, 
      s[i]->yi); 
     // Close thread 
    } 
  } else { // cycle, serial execution of slaves, iteration 
   itSteps = 0; 
   newStep = fmiTrue; 
   // Iteration 
   do { 
    ++itSteps; 
    // Backup of values exchanged between slaves for error 
    // check 
    oldValues = values; 
    // Call slaves of priority prior 
    for (i = 0; i < nsim; ++i) 
     if (priority[i] == prior) { 
      // Set inputs for slaves of priority prior 
      fmiSetReal(s[i]->component, ..., s[i]->nur, 
       s[i]->ur); 
      fmiSetInteger(s[i]->component, ..., 
       s[i]->nui, s[i]->ui); 
      status = fmiDoStep(s[i]->component, tc, 
       hStep, newStep); 
      if (status==fmiError || status==fmiFatal) 
       // error 
      // Get outputs for slaves of priority prior 
      fmiGetReal(s[i]->component, ..., s[i]->nyr, 
       s[i]->yr); 
      fmiGetInteger(s[i]->component, ..., 
       s[i]->nyi, s[i]->yi); 
     } 
    newStep = fmiFalse; 
    // Check error between old and new values of iteration 
    err = errorCheck(values, oldValues); 
   } while (err > 0 && itSteps < maxItSteps); 
  } 
 } 
 //increment current master time 
 tc += hStep; 
} 



 Functional Mock-up Interface for Co-Simulation 
 MODELISAR (ITEA 2 - 07006) 
 September 30, 2010 
 Page 49 of 57 

 
////////////////////// 
// Shutdown sub-phase 
if (status == fmiOK) { 
 // Terminate slaves 
 for (i = 0; i < nsim; ++i) 
  fmiTerminateSlave(s[i]->component); 
 // Reset slaves 
 for (i = 0; i < nsim; ++i) 
  fmiResetSlave(s[i]->component); 
} 
 
if (status != fmiFatal) 
 // Cleanup slaves 
 for (i = 0; i < nsim; ++i) 
  fmiFreeSlaveInstance(s[i]->component); 
 



 Functional Mock-up Interface for Co-Simulation 
 MODELISAR (ITEA 2 - 07006) 
 September 30, 2010 
 Page 50 of 57 

Appendix D Higher Order Signal Extrapolation 

Within each communication step  the slave inputs  are approximated using function 

values at  and possibly up to 

1+→ ii tctc )(tu

itct = 1−r  more previous communication points 

  for some riii tcttcttct −+−− === 121  ..., , , 1>r . In a serial implementation, it is even possible that some 

slaves may use function values  at the new communication point . )(tu 1+= itct

In most co-simulation algorithms, polynomial approximations of slave inputs are used: 

• Constant (“zero order”) extrapolation based on data at  : itct =
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and so on. In all these examples, a Nordsieck like representation of the interpolating and extrapolating 

polynomials was used that expresses the approximation of  in terms of powers of  with 

coefficients being defined by difference quotients of u . Note, that the denominators of these difference 

quotients may be further simplified in the case of equidistant communication points 

 with fixed communication step size : 

)(tu )( itct −

... , , , , 112 +−− iiii tctctctc hc

...       , 
22

       ,  211
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The Nordsieck like representation of the slave inputs is favourable since it abstracts from algorithmic 

details (like data interpolation vs. data extrapolation) and requires at a communication point  just 

the transfer of the derivative vector 
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the extrapolated or interpolated slave inputs  in communication step . For polynomial 

slave inputs , the length  of this derivative vector determines the degree k  of the polynomial 

and the components of the derivative vector contain in increasing order the coefficients of  

)(tu 1+→ ii tctc

)(tu 1+k

!)( jtct j
i−  

for : kj ,...,1,0=

∑
=

−≈
k

j

j
iij

j

tcttc
dt

ud
j

tu
0

)( )( 
!

1 )( .  

The Nordsieck representation of polynomials is not restricted to classical interpolation polynomials but 
may be used as well for more sophisticated co-simulation techniques like the extrapolated interpolation 
(S. Dronka, J. Rauh: Co-Simulation-Interface for User-Force-Elements. – SIMPACK User Meeting 2006, 
http://www.simpack.com/uploads/media/um06_dc_research-dronka_05.pdf) or interpolated extrapolation 
of slave inputs. Also the extension to interpolation by rational functions and related approaches is 
straightforward. 

Practical experience and recent theoretical investigations (M. Arnold: Stability of sequential modular time 
integration methods for coupled multibody system models. - Journal of Computational and Nonlinear 
Dynamics, 5(2010)031003, doi:10.1115/1.4001389) show that higher order signal extrapolation 
increases the risk of numerical instability in co-simulation. Therefore, polynomial signal extrapolation is 
typically restricted to constant, linear or quadratic polynomials. In principle, however, interpolation 
polynomials of arbitrary degree could be computed and evaluated very efficiently using their Newton 
representation that may be found in any textbook on numerical mathematics. The coefficients 

 of the Nordsieck representation are obtained by Taylor expansion of the interpolation 

polynomial at .  

... ),( ),( ii tcutcu

itct =

 



 Functional Mock-up Interface for Co-Simulation 
 MODELISAR (ITEA 2 - 07006) 
 September 30, 2010 
 Page 52 of 57 

Appendix E Communication Step size Control 

In contrast to classical (mono-disciplinary) simulation techniques in system dynamics, state-of-the-art 

master algorithms in co-simulation are even today based on constant communication step sizes hc  and 

do not provide any automatic error control. Constant communication step sizes may restrict strongly the 
efficiency of co-simulation algorithms if the solution behavior changes considerably during time 

integration. Furthermore, the selection of an “optimal” constant communication step size hc  requires 

much practical experience or time-consuming numerical tests. 

Therefore, error control and the adaptive selection of (variable) communication step sizes  may 

contribute to more reliable and more efficient master algorithms. The basic ideas of classical step size 
control in time integration are described in great detail in the literature on numerical solution of ordinary 
differential equations (U. Ascher, L.R. Petzold: Computer Methods for Ordinary Differential Equations 
and Differential-Algebraic Equations. - SIAM Philadelphia, 1998). The practical implementation in the 
explicit Runge-Kutta code DOPRI5 (

ihc

http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f) may be 
considered as an advanced reference implementation in classical ODE time integration. 

Step size control is based on the component based comparison of an error estimate EST  with user 

defined bounds ,  in each time step: ATOL RTOL
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The error indicator err  shows if the (estimated) error EST  is below the given error bounds ATOL , 

 (resulting in ). If , then the (estimated) error is too large and the current step 

should be repeated with smaller step size. 

RTOL 1err ≤ 1err >

The crucial part of this error control strategy is the efficient evaluation of a reliable error estimate EST  

that may be obtained comparing two numerical solutions of different accuracy. In ODE and DAE time 

integration, the nominal numerical solution in a time step hTT +→  is compared 

• with the predictor of a linear multistep method in predictor-corrector form, 

• with an embedded Runge-Kutta solution of different order in the case of Runge-Kutta methods or  

• with the result of two time steps of reduced step size ( 2/hTT +→  and hThT +→+ 2/ , 

Richardson extrapolation). 
The details of an efficient implementation are sophisticated, see the above given references. The use of 
Richardson extrapolation for communication step size control in co-simulation is discussed in (R. Kübler: 
Modulare Modellierung und Simulation mechatronischer Systeme. Fortschritt-Berichte VDI Reihe 20, Nr. 
327. VDI-Verlag Düsseldorf, 2000). 

In the context of co-simulation, vector  should estimate in each communication step  all 

errors in the slave outputs  that result from the use of approximated slave inputs 

EST 1+→ ii tctc

)( 1+itcy

http://www.unige.ch/%7Ehairer/prog/nonstiff/dopri5.f
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)(),( 1+≤≤ ii tcttctu . Then, the error indicator err  shows if the communication step size was 

sufficiently small to meet some user defined error bounds ATOL ,  or not. Furthermore, the ratio 

between the error indicator er

ihc

RTOL
r  and its optimal value 1.0 may be used to define a posteriori an “optimal” 

communication step size  : opthc

1
1

opt
1  :

+
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⎞
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i err
hchc α  

]9with a safety factor .0,8.0[∈α  and  denoting the approximation order of the signal extrapolation for 

slave inputs . Note, that  is always smaller than the current communication step size  if the 

error estimate  exceeds the given tolerances ( err ). 

k

)(tu opthc ihc

EST 1>

If all slaves in a co-simulation environment support variable communication step sizes  (capability 

flag canHandleVariableCommunicationStepSize), then the master algorithm may use this optimal 

communication step size  for the next communication step  with 

. (At least) a warning message should be generated whenever the error indicator er

ihc

opthc 1121 : ++++ +=→ iiii hctctctc

opt1 : hchci =+ r  

exceeds its critical value 1.0. 

In a really error controlled master algorithm, however, a communication step resulting in an error 

indicator  has to be repeated with smaller communication step size (“rejected” communication 

steps). FMI for Co-Simulation supports such step rejections by repeated calls of fmiDoStep(…) with one 

and the same input parameter currentCommunicationPoint and different input parameters 

communicationStepSize. To keep the discussion in this appendix compact the parameters 

currentCommunicationPoint and communicationStepSize are abbreviated by and , 

respectively. I.e., fmiDoStep(…) is called to perform one communication step . 

1err >

M
curt curh

cur
M
cur

M
cur htt +→

In a practical implementation of advanced error controlled master algorithms, all slaves of the co-
simulation environment have to support repeated calls with one and the same current communication 

time  and different communication step sizes  (capability flag canRejectSteps). It is mandatory 

for a successful co-simulation with communication step size control that all slaves in the co-simulation 
environment guarantee that repeated calls of fmiDoStep(…) with identical input data (i.e. with identical 

 and  and identical slave inputs ) result in exactly identical output data. Therefore, the 

capability to discard and to repeat communication steps (capability flag canRejectSteps) requires 
substantial modifications and extensions of existing simulation software that is typically designed to 
solve model equations and to store simulation data going step by step forward in time from initial time 

 to end time  . 

M
curt curh

M
curt curh )(tu

startt stopt

With advanced error controlled master algorithms there are two fundamentally different types of 

communication steps : cur
M
cur

M
cur htt +→
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• Accepted communication steps: All slaves perform successfully the communication step and generate 

simulation data that should be saved to file. At  the error estimate  and the error 

indicator 

cur
M
cur ht + EST

err  are evaluated resulting in 1err ≤ . Then, the current communication point  is 

updated to  and co-simulation proceeds with the next communication step and “optimal” 

communication step size , input parameter newStep of fmiDoStep(…) is set to fmiTrue. 

M
curt

cur
M
cur ht +

opthc

• Rejected (or “discarded”) communication steps: All slaves perform the communication step but do not 
generate any simulation data for file output. If all slaves complete successfully the full communication 

step  then the error estimate  and the error indicator ercur
M
cur

M
cur htt +→ EST r  are evaluated but the 

error indicator exceeds its critical value: . The communication step has to be repeated with the 

same current communication point  as before but reduced communication step size  . The 

communication step has to be repeated as well if at least one slave fails to complete the communication 

step successfully. Again, the current communication point  is left unchanged and the communication 

step size  is reduced appropriately. 

1err >
M
curt optcur : hch =

M
curt

curh

A technically challenging problem in the design and implementation of error controlled master algorithms 

is caused by the fact that during a communication step , i.e. during a call to 

fmiDoStep(…), neither the master nor any slave know if the communication step will finally be accepted 
or not since this decision is based on the output of all slaves. The output of simulation data to file, 
updates of model parameters etc. have to be postponed until all slaves have completed the current call 
of fmiDoStep(…) and the error criterion er

cur
M
cur

M
cur htt +→

r  is evaluated. In a practical implementation, the file output 

of simulation data during the communication step may be redirected to a data buffer. If the 
communication step is accepted, the buffered data are written to file, otherwise the data buffer is 
cleared.  

In nested co-simulation environments with nested communication step size control, the situation gets 
even more complicated since the output of simulation data has to be postponed until all nested master 
algorithms accept the (nested) communication steps. In FMI for Co-Simulation, the information that the 

previous communication step  was accepted may be given to the slaves setting 

parameter newStep to fmiTrue in the next call to fmiDoStep(…). I.e., if a slave is called by function 

fmiDoStep(…) with input argument newStep set to fmiTrue, then the previous call of this slave by 

function fmiDoStep(…) resulted in an accepted communication step and data buffers should be written 

to file, model parameters should be updated (if applicable) etc. before starting the computation of the 

current communication step. This implementation scheme is applicable as well at the end time  

performing a call of fmiDoStep(…) with  and  and newStep = fmiTrue before 

terminating the co-simulation. 

cur
M
cur

M
cur htt +→

stopt

stop
M
cur tt = 0cur =h

The specific problem in nested co-simulation environments is the fact that an accepted communication 
step of the inner co-simulation environment may belong to a (larger) rejected communication step of the 
outer co-simulation environment. Currently, all practical experience with communication step size control 
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in co-simulation is restricted to master algorithms generating non-decreasing sequences . More 

sophisticated algorithms for nested master algorithms are still under development. 

M
curt
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Glossary 
This glossary is a subset of (MODELISAR Glossary, 2009) with some extensions specific to this 
document. 

Term Description 
algorithm A formal recipe for solving a specific type of problem.  
application 
programming 
interface (API) 

A set of functions, procedures, methods or classes together with type 
conventions/declarations (e.g., C-header files) that an operating system, library or 
service provides to support requests made by computer programs.  

communication points Time grid for data exchange between master and slaves in a co-simulation 
environment (also known as “sampling points” or “synchronization points”). 

communication step 
size 

Distance between two subsequent communication points (also known as “sampling 
rate” or “macro step size”). 

co-simulation Coupling (i.e., dynamic mutually exchange and utilization of intermediate results) of 
several simulation programs including their numerical solvers in order to simulate a 
system consisting of several subsystems. 

co-simulation 
interface 

The set of interfaces within the MODELISAR framework to perform a co-simulation. 

co-simulation 
platform 

Software, which obtains means for coupling several simulation programs for co-
simulation. 

functional mock-up 
environment (FMUE) 

In the general scheme of a simulation program FMUE is the part, which is responsible 
for all control activities and computations of the simulation, including data exchange 
between coupled simulation programs. It does include neither a user interface nor a 
logic for a user interaction. 

functional mock-up 
interface for co-
simulation 

One of the MODELISAR functional mock-up interfaces.  
It connects the master solver component with one or more slave solvers. 

functional mock-up 
interface for model 
exchange  

One of the MODELISAR functional mock-up interfaces. It consists of the model 
description interface and the model execution interface. 
It connects the external model component with the solver component. 

functional mock-up 
trust center (FMTC) 

As defined in the MODELISAR framework, FMTC describes a closed system 
providing model and simulation access to authenticated users and functional mock-up 
authorities through dedicated cryptographic interfaces. 

functional mock-up 
unit (FMU) 

A “model class” from which one or more “model instances” can be build for 
simulation. A FMU is stored in one zip-file as defined in section 4 consisting basically 
of one xml file (see section 3) that defines the model variables and a set of C-
functions (see section 2), in source or binary form, to execute the model equations or 
the simulator slave. In case of tool exection, additionally, the original simulator is 
required to perform the co-simulation (compare section 3.5.2). 

gateway A link between two computer programs allowing them to share information and 
bypass certain protocols on a host computer.  

integration algorithm The numerical algorithm to solve differential equations. 
integrator A software component, which implements an integration algorithm. 
interface An abstraction of a software component that describes its behavior without dealing 

with the internal implementation. Software components communicate with each other 
via interfaces.  
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master/slave A method of communication, where one device or process has unidirectional control 
over one or more other devices. Once a master/slave relationship between devices or 
processes is established, the direction of control is always from the master to the 
slaves. In some systems a master is elected from a group of eligible devices, with the 
other devices acting in the role of slaves.  

model A model is a mathematical or logical representation of a system of entities, 
phenomena, or processes. Basically a model is a simplified abstract view of the 
complex reality.  
It can be used to compute its expected behavior under specified conditions.  

model description file The model description file is an XML-file, which supplies a description of all properties 
of a model (e.g. input/output variables). 

model description 
interface 

An interface description to write or retrieve information from the model description file.

model execution 
interface [from model 
interface working 
group] 

An interface description to access the equations of a dynamic system from an 
external program. 

numerical solver see solver 
output points Tool internal time grid for saving output data to file (in some tools also known as 

“communication points” – but this term is used in a different way in FMI for Co-
Simulation, see above). 

output step size Distance between two subsequent output points. 
parameter A quantity within a model, which remains constant during simulation, but may be 

changed between simulations.  
Examples are a mass, stiffness, etc. 

slave see master/slave 
simulation Compute the behavior of one or several models under specified conditions.  

(see also co-simulation) 
simulation model see model 
simulation program Software to develop and/or solve simulation models. The software includes a solver, 

may include a user interface and methods for post processing (see also: simulation 
tool, simulation environment). 
Examples of simulation programs are: Amesim, Dymola, Simpack, SimulationX, 
Simulink. 

simulation tool see simulation program 
simulator A simulator can include one or more simulation programs, which solve a common 

simulation task. 
solver Software component, which includes algorithms to solve models, e.g. integration 

algorithms and event handling methods. 
user interface The part of the simulation program that gives the user control over the simulation and 

allows watching results. 
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