

Functional Mock-up Interface for
Co-Simulation

MODELISAR (07006)

Document version: 1.0
 October 12, 2010

• • • • ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 2 of 57

History

Version Date Remarks

1.0 2010-10-12 First version

License of this document

Copyright © 2008-2010, MODELISAR consortium.

This document is provided “as is" without any warranty. It is licensed under the CC-BY-SA (Creative
Commons Attribution-Sharealike 3.0 Unported) license, i.e., the license used by Wikipedia. Human-readable
summary of the license text from http://creativecommons.org/licenses/by-sa/3.0/:

You are free:

• to Share — to copy, distribute and transmit the work, and

• to Remix — to adapt the work

Under the following conditions:

• Attribution — You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work.)

• Share Alike — If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

The legal license text and disclaimer is available at:

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Note:

• Article (3a) of this license requires that any Derivative Work must clearly label, demarcate or otherwise
identify that changes were made to the Original Work.

• The C-header and XML-schema files that accompany this document are available under the BSD
license (http://www.opensource.org/licenses/bsd-license.html) with the extension that modifications
must be also provided under the BSD license.

• If you have improvement suggestions, please send them to the FMI development group at
info@functional-mockup-interface.org.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.opensource.org/licenses/bsd-license.html

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 3 of 57

Abstract

This document defines the “Functional Mock-up Interface for Co-Simulation”. While the interface
specification “Functional Mock-up for Model Exchange” (see MODELISAR 2010 for details) gives
standardized access to simulation model equations, the basic intention of this document is to provide an
interface standard for coupling two or more simulation tools in a co-simulation environment. Co-
simulation is a simulation technique for coupled time-continuous and time-discrete systems that exploits
the modular structure of coupled problems in all stages of the simulation process (pre-processing, time
integration, post-processing).

The data exchange between subsystems is restricted to discrete communication points (sampling points,
synchronization points). In the time between two communication points, the subsystems are solved
independently from each other by their individual solver. Master algorithms control the data exchange
between subsystems and the synchronization of all slave simulation solvers (slaves).

There are two possible ways to provide slave subsystems for co-simulation: subsystems with their
specific solver, which can be simulated as stand-alone components (dll-files), or subsystems with their
simulation tool, in which they have been developed. Both approaches are covered by this standard.

FMI for Co-Simulation provides interfaces between master and slaves and supports rather simple master
algorithms as well as more sophisticated ones. A small set of easy to use C-functions was developed to
implement the interface. Note that the master algorithm itself is not part of the standard FMI for Co-
Simulation, but a very simple example is given and discussed in this document.

All information about the slaves, which is relevant for the communication in the co-simulation
environment is provided in a slave specific XML-file. In particular, this includes a set of capability flags to
characterize the ability of the slave to support advanced master algorithms, e.g. the usage of variable
communication step sizes, higher order signal extrapolation, or others.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 4 of 57

Contents

1. Overview ..5

2. Co-Simulation..8
2.1. Generic Co-Simulation Activity Flow ...8

2.1.1. Process Assumptions..8
2.1.2. Distributed Infrastructure Assumptions ...13

2.2. Numerical Co-Simulation Computation Flow ..16
2.2.1. Master-Slave Structure..17
2.2.2. Basic Co-Simulation Computation Flow..18
2.2.3. Master..19
2.2.4. Slave..20
2.2.5. Example of Master Algorithm ..20

3. The Application Programming Interface ..22
3.1. The Co-Simulation Interface..22

3.1.1. Platform Dependent Definitions (fmiPlatformTypes.h) ...22
3.1.2. Status Returned by Functions...23
3.1.3. Inquire Platform and Version Number of Header Files ...23

3.2. Creation and Destruction of Co-Simulation Slaves...24
3.2.1. Transfer of input / output values and parameters ...27
3.2.2. Computation ..28
3.2.3. Retrieving of Status Information from the Slave..29

3.3. State Machine of Calling Sequence from Master to Slave..30
3.4. Pseudo Code Example..31
3.5. The Co-Simulation Description Schema ...33

3.5.1. Description of a Model for Co-Simulation (fmiModelDescription)33
3.5.2. Definition of an Implementation...34

4. Model Distribution ..38

5. Literature..40

Appendix A Contributors...41
A.1 Version 1.0 ..41

Appendix B Features for Future Versions ...42

Appendix C Further Examples for Simulator Coupling ..45
C.1 Example 1: Parallel simulation and input/output of different kinds..45
C.2 Example 2: Cycle (feedback) ..45
C.3 Pseudo Code for both examples...46

Appendix D Higher Order Signal Extrapolation ..50

Appendix E Communication Step size Control...52

Glossary ...56

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 5 of 57

1. Overview

This document specifies a standardized Functional Mock-up Interface (FMI) for the coupling of two or
more simulation models in a co-simulation environment (FMI for Co-Simulation). Co-simulation is a
rather general approach to the simulation of coupled technical systems and coupled physical
phenomena in engineering with focus on instationary (time-dependent) problems. FMI for Co-Simulation
is designed both for the coupling of simulation tools (simulator coupling, tool coupling), and coupling with
subsystem models, which have been exported by their simulators together with its solvers as runnable
code.

Co-simulation exploits the modular structure of coupled problems in all stages of the simulation process
beginning with the separate model setup and preprocessing for the individual subsystems in different
simulation tools. During time integration, the simulation is again performed independently for all

subsystems restricting the data exchange between subsystems to discrete communication points .

Finally, also the visualization and post-processing of simulation data is done individually for each

subsystem in its own native simulation tool. In different contexts, the communication points , the

communication steps and the communication step sizes are also known as

sampling points (synchronization points), macro steps and sampling rates, respectively. The term
“communication point” in FMI for Co-Simulation refers to the communication between simulation tools
and should not be mixed with the output points for saving simulation results to file.

itc

itc

1+→ ii tctc iii tctchc −= +1:

FMI for Co-Simulation is an interface standard for the solution of time dependent coupled systems
consisting of subsystems that are continuous in time (model components that are described by
instationary differential equations) or time-discrete (model components that are described by difference
equations like, e.g., discrete controllers). In a block representation of the coupled system, the

subsystems are represented by blocks with (internal) state variables that are connected to other

subsystems (blocks) of the coupled problem by subsystem inputs and subsystem outputs . In

this framework, the physical connections between subsystems are represented by mathematical coupling

conditions between the inputs and the outputs of all subsystems [R. Kübler, W. Schiehlen:

Two methods of simulator coupling. - Mathematical and Computer Modeling of Dynamical Systems
6(2000)93-113].

)(tx

)(tu)(ty

)(tu)(ty

FMI for Co-Simulation addresses two basic aspects:

1.

2.

the data exchange between subsystems and

algorithmic issues to synchronize the simulation of all subsystems and to proceed in communication

steps (macro steps) from initial time to end time . 1+→ ii tctc startttc =:0 stopN ttc =:

For the first aspect, data exchange, the individual simulation tools have to be connected via MPI,
TCP/IP, sockets or alternative ways of communication. In each individual simulation tool, these
connections are initialized before the beginning of the time integration. In the co-simulation environment,

the mapping from all subsystem outputs to the subsystem inputs has to be initialized to

consider all physical coupling between the subsystems.

)(ty)(tu

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 6 of 57

For the second aspect, a co-simulation specific software component is needed to organize the progress

from to in communication steps and the data exchange between

subsystems at the communication points

startttc =0 stopNtc = t 1+→ ii tctc

start i stopt tc t≤ ≤ (exchange of subsystem outputs). This

software component is called master of the co-simulation environment. It may be implemented in one of
the individual simulation tools (master tool) or in a separate simulation backplane. In its most general
form, the coupled system may be simulated in nested co-simulation environments and FMI for Co-
Simulation applies to each level of the hierarchy.

)(itcy

FMI for Co-Simulation defines interface routines for the communication between a master and individual
simulation tools (slaves) in a co-simulation environment. A simulation tool or the part of it prepared for
co-simulation by implementing the FMI is called an FMU (Functional Mock-up Unit)1.

The most common master algorithm stops at each communication point the time integration of all

slaves, collects the outputs from all subsystems, evaluates the subsystem inputs ,

distributes these subsystem inputs to the slaves and continues the (co-)simulation with the next

communication step with fixed communication step size hc . In each slave, an

appropriate solver is used to integrate one of the subsystems for a given communication

step . The most simple co-simulation algorithms approximate the (unknown) subsystem inputs

by frozen data for tc

itc

)(itcy)(itcu

hctctctc iii +=→ +1

1+→ ii tctc

)(),(itcttu >)(u itc 1i it tc +≤ < .

FMI for Co-Simulation supports this classical brute force approach as well as more sophisticated master

algorithms that adapt, e.g., the communication step size to the solution behavior

(communication step size control), use higher order signal extrapolation to approximate the subsystem

inputs

iii tctchc −= +1

1(), ()i iu t tc t tc +≤ < , or handle the subsystems in each communication step sequentially such that

intermediate results from the very first subsystems may be used to improve the approximation of

subsystem inputs in later stages of the communication step. FMI for Co-Simulation is designed to

support a very general class of master algorithms but it does not define the master algorithm itself.

)(tu

Subsystem inputs and subsystem outputs are described in a slave specific XML-file that contains all
information about slave solver, slave model etc. being relevant for the co-simulation environment. The
ability of slaves to support more sophisticated master algorithms is characterized by a set of capability
flags that are added to the slave specific XML-file. Typical examples are the ability to handle variable

communication step sizes and the ability to repeat a rejected communication step with

reduced communication step size.

ihc 1+→ ii tctc

The current document is structured as follows: After this general introduction and overview, Section 2
discusses the general phases of co-simulation workflow together with a more detailed description of all
components of a co-simulation environment. The interface itself is defined and discussed in Section 3.
Section 4 describes the structure of the archive called Functional Mock-up Unit (FMU), followed by a list

1 This definition differs slightly from the one used in the FMI for Model Exchange in that, in the case of tool coupling the original

tool is additionally required to perform the co-simulation.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 7 of 57

of references and the glossary. Additional issues like future extensions of FMI for Co-Simulation, further
examples of simulator coupling and some numerical issues are summarized in the Appendix.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 8 of 57

2. Co-Simulation

This section gives an overview on co-simulation from a process perspective describing a sequence of
phases that are part of a co-simulation task. For the subsequent phases different aspects of FMI for Co-
Simulation have to be considered. Section 2 also describes different co-simulation scenarios, which are
called “code generation” and “tool coupling” in this document.

2.1. Generic Co-Simulation Activity Flow

2.1.1. Process Assumptions

The following sections are meant to indicate the possible process steps that may be taken by simulation
tools being part in a co-simulation setting. The overall process can be divided into a design phase, a
deployment phase, and a simulation phase.

Figure 1: Co-Simulation Process Phases

2.1.1.1. Design Phase

The design phase (Figure 2) encompasses all the activities linked to the creation of a simulation model,
the packaging of the simulation model into an FMU component, and the composition of a combined
system model that makes use of several FMU components.

Figure 2: Design Phase Steps

Some vendors may only provide modeling and transformation capabilities for their simulation tools; the
simulation tool only provides an 'FMU export' feature, and is referred to as a slave simulator.

Other vendors may only provide composition capabilities for their simulation tools; such simulators are
pure co-simulation platforms, and generally provide an 'FMU import' feature. A simulator of this type is
referred to as master simulator.

A simulation tool can also provide both FMU export and FMU import features. As a result, an FMU can
be imported that includes itself a number of nested FMUs leading to a hierarchical composition of FMUs.

The following paragraphs describe each individual design step in more detail.

Modeling Step
The modeling step is the sole responsibility of the slave simulator. The user creates a simulation model
for a certain subsystem according to the specific requirements of the simulator.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 9 of 57

Transformation Step
Once the simulation model is ready, the user needs to decide how the subsystem model will be exported
into an FMU implemented either with the FMI for Model Exchange API (see specification document for
details) or with the FMI for Co-Simulation API (Figure 3). In this document only the second case is
discussed.

Figure 3: FMU Export Alternatives

The first decision is in terms of parameters; a list of model parameters is selected that will be made
public to the master. The result is the generation of the 'Model Description' XML file which describes
the model in terms of a black box.

The second decision pertains to the form in which the model will be exposed to the master. Two
alternatives are possible:

• Code Generation: The subsystem model is converted into code, i.e., the equations as well as the
solver are compiled into a shared library for one or more targets (similar to the FMI for Model
Exchange). Both model code and shared library can be included in the FMU archive (see section 4 for
details). The master uses the shared library during a simulation run. In the XML-file this is indicated
by the Implementation flag with the value CoSimulation_StandAlone.

• Tool Coupling: The subsystem model and dependencies are stored directly within the FMU. The
master needs to couple to the original slave simulator that exported the FMU to be able to perform a
simulation run. Instead of the compiled model code the FMU archive contains a shared library of a
slave tool specific wrapper, which is to be imported by the master tool and interfaces the external
tool. The XML Implementation flag has the value CoSimulation_Tool (for details see also 3.5.2).

The end-result is an FMU that contains a Model description XML file, and possibly the generated model
code, compiled shared libraries, or the actual model files. The FMU may be published to some FMU
library; two alternatives are possible:

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 10 of 57

• The slave simulator published the FMU to a proprietary location within the simulator environment, or

• the FMI for PLM API is used to publish the FMU to a central PLM repository.

Composition Step

In general, co-simulation platforms require some form of composition of slave simulation models in order
to join subsystem models to a complete simulation system. This composition may be performed in
different manners, and typically results in some form of a component-connection graph structure (Figure
4). In this specification, components denote imported FMU instances and the connections represent the
communication paths used to exchange data between FMUs. The master is then responsible to schedule
communication between components (master algorithm).

Figure 4: Component-Connection Graph Structure

A component-connection graph variant commonly used is the co-simulation with signal pools (Figure 5).
Typically a component publishes a specific output variable that is subscribed by several other
components as input. A co-simulation signal pool model can easily be converted to a connection graph
model.

Figure 5: Signal-Pool Variant of a Component-Connection Graph Structure

A master can import an FMU by reading the FMU’s zip-archive and the therein contained Model
Description XML file. The model description provides the information required by the master to expose
the name, the parameters, inputs and outputs of the FMU.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 11 of 57

Figure 6: FMU Classifier/Instance Differences

To ensure reusability of an FMU within the same component-connection graph, a clear distinction is
made between classes and instances. Each specific FMU is a subsystem class with a unique identifier
(the name of an FMU is subsystem dependent). Because an FMU may appear several times within a
component-connection graph, an FMU is instantiated with each instance being assigned a unique
identifier. The FMU instance denotes then a component within the component-connection graph.

Additionally, each FMU instance stores the initial parameter values and the connection-graph can store
the simulation parameters.

2.1.1.2. Deployment Phase

If co-simulation is enacted within a single host, all FMU components need to be accessible to that host.
The master has direct file-access to the FMUs; in the simulation phase, the instantiation of FMUs can
occur directly within the master process.

In the context of distributed co-simulation, the master typically communicates with slave simulators
located on remote machines. The slave simulator is instructed to load the FMU in memory, and exposes
the loaded FMU as an instance to the master. To do so, the slave simulation requires access to the
FMU.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 12 of 57

.fmu

Wrapper Tool 2

Network

Sub‐
system
B

Simulation Tool

Solver

A2
BA1

Solver Tool A

Sub‐
system A

.fmu

.fmu

Wrapper Tool 2

.fmu

Wrapper Tool 2

.fmu

Wrapper Tool 2Wrapper Tool 2Wrapper Tool 2

Network

Sub‐
system
B

Simulation Tool

Solver

Sub‐
system
B

Simulation ToolSimulation Tool

Solver

A2
BA1

A2A2
BA1A1

Solver Tool A

Sub‐
system A

.fmu

Solver Tool A

Sub‐
system A

Solver Tool A

Sub‐
system A

.fmu

Figure 7: Distribution of FMUs across a Co-Simulation Cluster

Deployment refers to the act of making FMUs available to the slave simulators located remotely to the
master; deployment can be performed in different ways.

An offline deployment refers to the manual transport of FMUs to remote locations. Some co-simulation
platforms perform deployment within the composition phase. FMUs are copied remotely by the user.

An online deployment is the automatic deployment of FMUs on different hosts by the master. The user
only needs to specify on which hosts the various FMU instances need to be transferred to.

Either way, the end result is that the various FMUs used by the master are distributed on the intended
hosts.

2.1.1.3. Simulation Phase

The simulation phase (Figure 8) encompasses all the activities related to the execution runtime. The
master is responsible for the lifecycle of FMU instances within a simulation run (experiment).

Figure 8: The Simulation Phase

The lifecycle of an FMU is comprised by the following sub-phases.

Instantiation Sub-phase

The master simulator is responsible for the instantiation of all FMU instances contained within the
component-connection graph. The FMUs are then loaded into memory and instantiated.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 13 of 57

Initialization Sub-phase

Once an FMU instance is ready, the master simulator can set the initial values for each FMU-instance
parameter as defined in the component-connection graph. All FMU instances are initialized before
simulation can start.

Simulation Sub-phase

The master simulator is responsible for the proper orchestration of the different FMU instances according
to a so-called master algorithm (see section 2.2).

Shutdown Sub-phase

The master simulator is responsible for the proper memory deallocation locally and remotely. All FMU
instances need to be shutdown; optionally, the FMUs themselves may be deleted from the operating
system.

2.1.2. Distributed Infrastructure Assumptions

This section relates to the general assumptions that are made in this document about the kind of co-
simulation architecture available on the market. The objective is to ensure that the FMI for co-simulation
API is generic enough to be adopted as wide as possible.

Focus is given to the distributed aspect of co-simulation which is of particular interest due the different
possibilities available on the market.

2.1.2.1. Generic Architecture

In the simplest compute / IT scenario, co-simulation is performed on one computer with shared memory
and a shared file system. The master simulation tool can import the shared library file from the FMU
(Figure 9).

Host 1
Simulation Tool 1: Master

User Interface

Sub‐
system 1

Solver Tool 1

Solver Tool 2

Sub‐
system 2

Host 1
Simulation Tool 1: Master

User Interface

Sub‐
system 1

Solver Tool 1

Solver Tool 2

Sub‐
system 2

Simulation Tool 1: Master

User Interface

Sub‐
system 1

Solver Tool 1

User InterfaceUser Interface

Sub‐
system 1

Solver Tool 1

Solver Tool 2

Sub‐
system 2

Solver Tool 2

Sub‐
system 2

Figure 9: Co-simulation with generated code on a single computer

Figure 10 shows, how a tool coupling scenario can be performed on a single computer. From a user
account the FMI co-simulators to be deployed are accessible without additional authentication.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 14 of 57

Host 1

User Interface

Sub‐
system 1

Simulation Tool 1: Master

Solver Tool 1

Sub‐
system 2

User Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2

Host 1

Simulation Tool 1: MasterSimulation Tool 1: Master Simulation Tool 2Simulation Tool 2

User Interface

Sub‐
system 1

Solver Tool 1

User InterfaceUser Interface

Sub‐
system 1

Solver Tool 1

Sub‐
system 2

User Interface

Solver Tool 2

Sub‐
system 2

User InterfaceUser Interface

Wrapper Tool 2Wrapper Tool 2Wrapper Tool 2

Solver Tool 2

Figure 10: Co-simulation with tool coupling on a single computer

In a distributed co-simulation compute / IT scenario, the FMI co-simulators to be deployed are installed
on different computers with maybe different OS (cluster computer, compute farm, computers at different
locations) connected by LAN, WLAN, or WAN via TCP/IP. The user has authorized access (e.g., a user
account) to the computers with the FMI simulators to be deployed.

Figure 11: Distributed Co-simulation Infrastructure

In such scenario, in order to couple an FMI co-simulation slave on one computer to an FMI co-simulation
master on another computer, a so called FMI co-simulation backbone or framework has to be available
(see Figure 11, communication layer tool). This backbone is a special middle-ware. It consists of
software on, both, co-simulation master and slave computer and performs the network communication
between master and slave. In effect, the FMI co-simulation master does not notice and differentiate the
location of the slave simulators.

The FMI co-simulation master (simulator) couples to the involved slave simulators through their FMI in
form of a zip-archive. Therefore, for every remote co-simulation slave an FMI zip-archive has to be
provided on the master's computer. This zip-archive, as well as the contained shared library file (DLL),
has to be compatible to the FMI backplane deployed for the connection with the respective slave
simulator. The co-simulation master reads and evaluates the XML description file in the FMI zip-archive.
The DLL contained in this zip-archive provides functions according to the FMI which are able to

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 15 of 57

communicate with the remote slave simulator via the FMI co-simulation backplane. The authentication on
the remote computer(s) is also performed by this backbone.

On the FMI co-simulation slave computer this backbone comprises an application server with an FMI
(master side) which can couple to an FMI slave. The server accesses the zip-archive of the FMI slave.
The application server loads/links the DLL to perform the communication between co-simulation master
and this slave.

2.1.2.2. Assumptions
FMU Availability Assumption

The general assumption is that an FMU is already available on the host where it will be started.
This assumption is fulfilled by an online/offline deployment.

Communication Assumption

No assumption is made as to which communication protocol or transport shall be used to access the
FMU instance across a network. The FMI-for-co-simulation shall not include details about host, tcp/udp
ports, etc.

FMI-for-co-simulation can only include local parameter specifications. The co-simulation framework
provides the remoting capabilities and is responsible to communicate with remote FMUs.

Simulator Assumption

The master simulator shall be given as little knowledge as possible about the slave simulator in a tool
coupling scenario. The objective is two fold:

• wrap all specific parameters required by a slave simulator in an implementation exposing the FMI-for-
co-simulation; this wrapper must be provided by the slave simulator tool vendor.

• wrap all specific parameters required by a co-simulation framework in an implementation exposing
the FMI-for-co-simulation; this wrapper will be loaded by the master simulator, and must be provided
by the co-simulation tool vendor.

2.1.2.3. Instantiation Sequence

The purpose of this section is to describe in more details the instantiation sequence required to remotely
load an FMU instance after calling the fmiInstantiateSlave.

In the following scenario, the co-simulation framework has already been provided with the component-
connection graph and the deployed location of FMU instances. The end result is to instantiate each FMU
instance locally or remotely.

1.

2.

3.

The master simulator loads the local FMU proxy, that is, the FMI wrapper (master adapter) provided
by the co-simulation framework.

The co-simulation framework sends an instruction to the remote application server to load a specific
FMU instance.

The remote application server selects the correct instantiation method. Two alternatives are possible:

• The FMU is composed of a shared library that includes model and solver in a compiled form. The
FMU shared library is directly loaded with the correct FMU instance identifier.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 16 of 57

• The FMU represents a tool coupling. The MIME-type of the slave simulator is used to select the
correct FMI wrapper provided by the slave simulator tool vendor.

4. The master simulator and slave simulator can now communicate over the FMI-for-co-simulation API.

2.2. Numerical Co-Simulation Computation Flow

Co-simulation is a simulation with more than one simulation tools which exchange intermediate results
(variables, values, information) during simulation.

A simulation tool (simulator) is a tool (algorithm, executable) that computes a model’s behavior, which
is called simulation. In the computational sense a simulation is an autonomously running process. FMI
for Co-Simulation is restricted to:

• All calculated values are time dependent functions within an a priori defined time interval)(tv

start stopt t t≤ ≤ .

• All calculations (simulations) are carried out time increasing in general. The actual time t is running

step by step from to . A tool may have the property to be able to repeat the simulation of

parts of or the whole time interval .

startt stopt

],[stopstart tt],[stopstart tt

• After simulation the interval is covered by subintervals with , ,

, . The subinterval length is called step size of the step, . This

step size is simulation tool internal.

],[stopstart tt],[1+ii tt Ni ≤<0 1+< ii tt

starttt =0 stopN tt = ih thi iii tth −= +1

A simulation tool can be coupled, if it has the following properties:

• The simulation tool can be given a time value , itc start i stopt tc t≤ ≤ .

• The simulation can be interrupted when is reached. itc

• During the interrupted simulation the simulation tool can both receive values and send

values .

)(itcu

)(itcy

• During the interrupted simulation the simulation tool can be given a new time value ,

to simulate the time subinterval

1+itc

1i i stotc tc t+≤ ≤ p 1i itc t tc +< ≤

• The subinterval length is called step size of the communication step, . In

general, the communication step size can be positive, zero, but not negative.

ihc thi iii tctchc −= +1

Figure 12: Data flow of a simulation tool at communication points

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 17 of 57

The item simulation tool in the sense of this description can be a huge variety of tools: a powerful
simulator like AmeSim, Dymola, Simpack, SimulationX, … but also a C program, which reads data from
a file without having its own solver. Within a system to be simulated many different tools should be able
to interact.

2.2.1. Master-Slave Structure

Co-simulation is used to solve a coupled system by simulating each part with its own coupleable
simulation tool. Once the system is established there exists a directed signal flow between the involved
simulation tools. Therefore it is assumed that the signal flow between the coupled simulation tools is
directed. The coupled simulation tools form a directed graph G the nodes of which are the simulation
tools, and the directed lines describe the data flow.

Figure 13: Example graph G of coupled simulation tools

Instead of directly coupling, a master is assumed to be located between the single simulation tools which
are now called slaves. Each arrow of the graph G is regarded as to go “through” the master.

Figure 14: Master-Slave structure

Slaves are assumed to communicate with the master only. In this description the interface between
master and slave is defined.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 18 of 57

The master itself can be involved in a higher order simulation environment serving as slave. On each
level of such a nested master hierarchy the FMI for Co-Simulation can be applied.

2.2.2. Basic Co-Simulation Computation Flow

The slaves will have properties which influence the possible master algorithms, especially restrict them.
The master has to select suitable algorithms. In this description the master algorithms will be neither
defined nor standardized. Only the interface between master and slaves is to be defined. Nevertheless,
a basic co-simulation flow is assumed:

2.2.2.1. Initialization Sub-phase

All simulation tools are prepared for starting the co-simulation. The communication links between master
and slaves are established. The master receives the properties of the slaves. Additionally the master
receives the connection graph G e.g. by user input. The master chooses the master algorithm based on
the capabilities of the involved slaves as well as the connection graph G, and possibly user inputs.

2.2.2.2. Simulation Sub-phase

The master forces the slaves to simulate the time interval by stepwise solving master

subintervals (communication steps) with

],[stopstart tt

],(1+ii tctc Ni ≤<0 , , , . The

subinterval length is called communication step size of the step, .

1+≤ ii tctc startttc =0 stopN ttc =

ihc thi iii tctchc −= +1

The boundary points of each subinterval are called communication points. It is allowed that

the communication step size can be zero (, iteration). In particular for the first simulation

step and at an event (event iteration) a communication step size of zero length is appropriate, .

1, +ii tctc

ihc ii tctc =+1

0=ihc

It depends on the master algorithm how the communication step size, and the communication points are
chosen. The master algorithm itself uses both the slave properties, and the graph G. The communication
points can be chosen by the master individually for each slave, and the master can start and stop each
slave independently from other slaves.

Before a subinterval is simulated, the slave receives its input values and possibly derivatives with

respect to time (, , …) as well as the communication step size . After starting the slave

simulation of the communication step the master receives the slave output values

and possibly derivatives with respect to time (, , …). Furthermore, the slave status has to

be transferred to the master. Especially if the slave simulation fails, further communication is necessary.

)(itcu

)(itcu)(itcu ihc

],[1+ii tctc)(1+itcy

)(1+itcy)(1+itcy

2.2.2.3. Shutdown Sub-phase

By giving a closing information the master forces the slaves to stop.

2.2.2.4. Summary of Transferred Information via FMI for Co-Simulation

The interface between master and slave must be able to transfer the following information:

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 19 of 57

To be transferred Direction When
Properties of the slave To master Initialization sub-phase
Status of the slave To master After communication step

Slave input values and derivatives

(optional)

)(itcu To slave Before communication step

Slave output values and derivatives

(optional)

)(1+itcy To master After communication step and
after initialization

Control commands, at least
- simulate communication step

- finish simulation

],[1+ii tctc
To slave At communication step

Shutdown sub-phase

The connection graph G which specifies the directed connection between inputs and outputs of the
slaves is also needed by the master. The input of this graph G is not standardized in this document. The
graph input can be achieved e.g. by a user input.

All information regarding the (static) properties of slaves will be collected within XML-files. By reading
the XML files the master gets the properties of the slaves.

2.2.3. Master

The tasks of the master are:

Tasks to be done in the initialization sub-phase:

• Ask the properties of the slaves.

• Analyze the graph G.

• Chose a master algorithm.

In the simulation sub-phase the master provides subintervals for each slave.

Before the slave simulation of a communication step the master tasks are:],[1+ii tctc

• Calculate the communication step size , as well as the communication step . ihc],[1+ii tctc

• Calculate the slave input values and possibly their derivatives , , …)(itcu)(itcu)(itcu

• Transfer , , and possibly , , … to the slave. itc 1+itc)(itcu)(itcu)(itcu

• Start the slave to simulate the communication step .],[1+ii tctc

• Wait for slave finishing.

After the slave simulation of the communication step the tasks are:],[1+ii tctc

• Ask the status of the slave, interpret it.

• Transfer and possibly , , … to the master, if the communication step is

calculated regularly, or after initialization. [adapt State Machine]

)(1+itcy)(1+itcy)(1+itcy

• Transfer additional information to the master, if the communication step is not calculated regularly,
e.g. error messages, or an intermediate stop time

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 20 of 57

In the shutdown sub-phase after the complete simulation, or in special cases

• Stop the complete simulation.

2.2.4. Slave

The tasks of the slave are:

Tasks to be done in the initialization sub-phase:

• Send the properties of the slave to the master.

Before the simulation of a communication step the tasks are:],[1+ii tctc

• Stop, if stop command is received (shutdown sub-phase).

• Receive , , and possibly derivatives , , … from the master. itc 1+itc)(itcu)(itcu)(itcu

• Simulate the communication step after receiving the simulate-command.],[1+ii tctc

• Transfer and possibly derivatives , , … to the master, if the communication

step is calculated regularly.

)(1+itcy)(1+itcy)(1+itcy

• Transfer additional information to the master, if the subinterval is not calculated regularly, e.g. error
messages, or intermediate stop time.

After the simulation of a subinterval the tasks are:],[1+ii tctc

• Wait for the next command.

This roughly described communication is detailed in section 3.

2.2.5. Example of Master Algorithm

One of the simplest master algorithms is like this:

• The communication step size is constant: . ihchci ∀=

• For all slaves the first input value is chosen by the master, e.g. . 0)(=starttu

• The input values are transferred to all slaves as well as the communication step size . The

slave simulation is started, and the resulting output values are transferred to the master. This

is done for increasing until is reached.

)(itcu hc

)(1+itcy

i stopt

• At each communication point the master distributes the received slave results to the slave

inputs according to the connection graph for the next communication step .

itc)(itcy

)(itcu],[1+ii tctc

The simplest way to use the input values by the slaves is to keep u constant during the slave simulation:

 for all .)()(itcutu = 1+≤≤ ii tcttc

For this simple master algorithm case a pseudo code example is given in the next section.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 21 of 57

More advanced master algorithms analyze the connection graph to elaborate an effective calling order
for the slaves. The communication step size can be adapted, and if possible communication steps can
be repeated to allow iterative master algorithms.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 22 of 57

3. The Application Programming Interface

The interface consists of two parts:

• Co-Simulation Interface
A set of C-functions for exchange of in/output values and status information.

• Co-Simulation Description Schema
The schema defines the structure and content of an XML-file. This file contains the “static” information
concerning the model (dimensions, input/output variables…) and the simulator (capabilities, …) which
is used to compute the model.

3.1. The Co-Simulation Interface

This chapter contains the interface description to access the in/output data and status information of a
co-simulation slave from a C program.

3.1.1. Platform Dependent Definitions (fmiPlatformTypes.h)

In order to simplify porting, no C types are used in the function interfaces, but the alias types defined in
this section. All definitions in this section are provided in the header file “fmiPlatformTypes.h”1.

typedef void* fmiComponent;

 This is a pointer to a co-simulation slave specific data structure. It contains all information
needed by the slave to process the co-simulation.

typedef unsigned int fmiValueReference;

 This is a handle to a (base type) variable value of the model. The handle is unique at least
with respect to the corresponding base type (like fmiReal). All structured entities, like
records or arrays, are “flattened” in to a set of scalar values of type fmiReal, fmiInteger
etc. An fmiValueReference references one such scalar. The coding of
fmiValueReference is a “secret” of the modeling environment that generated the model.
The interface only provides access to variables via this handle. Extracting concrete
information about a variable is specific to the used environment that reads the Model
Variable File in which the value handles are defined.

If a function in the following sections is called with a wrong fmiValueReference value
(e.g. setting an output with an fmiSetReal(...) function call), then the function has to
return with an error (fmiStatus = fmiError), i.e., the processing of the co-simulation
must be terminated.

typedef double fmiReal ; // Real number (64 bits)
typedef int fmiInteger; // Integer number (32 bits)
typedef char fmiBoolean; // Boolean number (8 bit,
 // two values: fmiFalse, fmiTrue)
typedef const char* fmiString ; // Character string (′\0′ terminated)
 // UTF8 encoded
#define fmiTrue 1

1 This file is identical to fmiModelTypes.h from Model Exchange 1.0. In the follow up version Model-Exchange will also use this

file.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 23 of 57

#define fmiFalse 0

 These are the basic data types used in the interfaces of the C-functions. More data types
might be included in future versions of the interface.
If an fmiString variable is passed as input argument to a function and the string shall be
used after the function has returned, the whole string must be copied (not only the pointer)
and stored in the internal memory, because there is no guarantee for the lifetime of the
string after the function has returned.

3.1.2. Status Returned by Functions

This section defines the “status” flag (an enumeration of type fmiStatus defined in file

“fmiModelFunctions.h”) that is returned by all functions to indicate the success of the function call.

typedef enum {fmiOK,
 fmiWarning,
 fmiDiscard,
 fmiError,
 fmiFatal,
 fmiPending
 } fmiStatus;

 Status returned by functions. The status has the following meaning

• fmiOK – all well
• fmiWarning – there are things not quite right, but the computation can continue.

Function “logger” was called in the model (see below) and it is expected that this
function has shown the prepared information message to the user.

• fmiDiscard – can be returned by fmiDoStep(...) or fmiGetSlaveStatus(...,
fmiDoStepState,...). See section 3.2.2. Is returned also if the slave is not able to
return the required status information. The master has to decide if the simulation run
can be continued anyway.

• fmiError – the slave encountered an error. If one of the functions (except
fmiDoStep(...)) returns fmiError, the simulation cannot be continued and
function fmiFreeInstance(...) must be called. Function “logger” was called (see
below) and it is expected that this function has shown the prepared information
message to the user.

• fmiFatal – the slave is irreparably corrupted. Function logger was called (see
below) and it is expected that this function has shown the prepared information
message to the user. It is not possible to call any other function of the slave.

• fmiPending – is returned if the slave executes the function in an asynchronous way.
That means the slave starts to compute but returns immediately. The master has to
call fmiGetStatus(..., fmiDoStepStatus) to find out, if the slave is ready. Can
be returned only by the function fmiDoStep(...) and by fmiGetStatus (see
section 3.2.

3.1.3. Inquire Platform and Version Number of Header Files

This section documents functions to inquire information about the header files used to compile its
functions.

const char* fmiGetTypesPlatform();

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 24 of 57

 Returns the name of the set of (compatible) platforms of the “fmiTypes.h” header file
which was used to compile the functions of the Model Exchange interface. The function
returns a pointer to the static variable “fmiTypesPlatform” defined in this header file. The
standard header file as documented in this specification has version “standard32” (so this
function usually returns “standard32”).

const char* fmiGetVersion();

 Returns the version of the implemented co-simulation interface functions. If a slave
supports the interface as it is described in this document it has to return “1.0”.

3.2. Creation and Destruction of Co-Simulation Slaves

This section documents functions that deal with instantiation and destruction of co-simulation slaves.

fmiComponent fmiInstantiateSlave(fmiString instanceName, fmiString fmuGUID,
 fmiString fmuLocation, fmiString mimeType,
 fmiReal timeout, fmiBoolean visible,
 fmiBoolean interactive,
 fmiCallbackFunctions functions,
 fmiBoolean loggingOn)

 Returns a new instance of a co-simulation slave. If a null pointer is returned, then
instantiation failed. In that case, function “functions->logger” was called and detailed
information is transferred given there. A slave can be instantiated many times. This function
must be called successfully, before any of the following functions can be called. The slave
has to perform all actions which are necessary before a simulation run starts (e.g. loading
the model file, compilation...).

Argument instanceName is a unique identifier for a given FMI Component instance.
This instance identifier is used to identify a component within a co-simulation graph model,
and can be used for logging messages. This argument cannot be null.

Argument fmuGUID is used to check that the co-simulation description file is
compatible with the model file used by the slave. It is a vendor specific globally unique
identifier of the co-simulation description file. It is stored in the description file as attribute
guide of fmiModelDescription (See section 3.5). The fmuGUID read from the co-simulation
description file and passed to fmiInstantiateSlave must be identical to the one stored
in the used model (e.g., it is a “fingerprint” of the relevant information stored in the
description file), otherwise the model and the description file are not consistent to each
other. This argument cannot be null.

Argument fmuLocation is an URI according to the ietf RFC3986 syntax to indicate
the access path to the FMU archive. The following protocols must be understood:
(Mandatory) file:// (Optional) http(s):// ftp:// (Reserved) ‘fmi://’ for fmi for PLM.

Argument mimeType represents the MIME type (ietf RFC 2045, 2046, 2047, 2048,
2049) of the ‘simulator’, e.g., ‘application/x-<simulator name>’, ‘application/x-
fmu-openmodelica’. If the FMU contains a shared library, i.e., Model exchange + solver,
the following mime-type should be used: ‘application/x-fmu-sharedlibrary’. This
mimetype is typically used to help identify which simulator or FMI wrapper DLL is to be
started for the specified FMU in the tool coupling scenario.
Special mimetype could be ‘application/x-fmu-modelica’ to be used by any modelica
simulators. This argument cannot be null.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 25 of 57

Argument timeout is a communication timeout value in milli-seconds to allow inter-
process communication to take place. A timeout value of 0 indicates an infinite wait period.

Argument visible indicates whether or not the simulator application window needed
to execute a model should be visible, i.e., fmiFalse value indicates that the simulator is
executed in batch mode, and fmiTrue value indicates that the simulator is executed in
interactive mode. Use case: in interactive mode, it should be possible to explicitly
acknowledge start of simulation / instantiation / initialization; acknowledgement is non-
blocking.

Argument interactive indicates whether the simulator application must be manually
started by the user, i.e., fmiFalse value indicates that the co-simulation tool automatically
starts the simulator application and executes the model referenced in the model description,
and fmiTrue value indicates that the simulator indicates that the simulator application
must be manually started by the user.

Argument functions provides callback functions to be used from the model functions
to utilize resources from the environment (see type fmiCallbackFunctions below).

If loggingOn=fmiTrue, debug logging is enabled. If loggingOn=fmiFalse, debug
logging is disabled.

typedef struct {
 void (*logger)(fmiComponent c, fmiString instanceName,
 fmiStatus status, fmiString category,
 fmiString message, ...);
 void (*stepFinished) (fmiComponent c, fmiStatus status);

 void* (*allocateMemory)(size_t nobj, size_t size);
 void (*freeMemory) (void* obj);
 } fmiCallbackFunctions;
 The struct contains pointers to functions provided by the environment to be used by the

slave. In the default fmiFunctions.h file, typdefs for the function definitions are present to
simplify the usage. This is non-normative. The functions have the following meaning:

Function logger:
Pointer to a function that is called in the model, usually if the model function does not
behave as desired. If “logger” is called with “status = fmiOK”, then the message is a
pure information message. “instanceName” is the instance name of the model that calls
this function. “category” is the category of the message. Usually, “category” is only used
for debug messages in order that the environment can filter the debug messages to be
shown. The meaning of “category” is defined by the modeling environment that generated
the model code. Argument “message” is provided in the same way and with the same
format control as in “printf(...)”. In the simplest case, this function might only print the
message. It might also just store the message in a stack of buffers and via options in the
environment the printing of the messages is controlled.
The logger function will append a line break to each message when writing messages after
each other to a terminal or file (the messages may also be shown in other ways, e.g. as
separate text-boxes in a GUI). The caller may include line-breaks (using "\n") within the
message, but should avoid trailing line breaks.

Variables are referenced in a message with “#<Type><ValueReference>#” where
<Type> is “r” for fmiReal, “i” for fmiInteger, “b” for fmiBoolean and “s” for fmiString.
If character “#”shall be included in the message, it has to be prefixed with “#”, so “#” is an
escape character. Example:

A message of the form

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 26 of 57

“#r1365# must be larger than zero (used in IO channel ##4)”
might be changed by the environment to

“body.m must be larger than zero (used in IO channel #4)”
if “body.m” is the name of the fmiReal variable with fmiValueReference =
1365.

Function stepFinished:
Optional call back function to signal if the computation of a communication step is
finished. A NULL pointer can be provided. In this case fmiDoStep has to be carried
out synchronously. If a pointer to a function is provided, it must be called after a
completed communication step.

Function allocateMemory:
Pointer to a function that is called in the model if memory needs to be allocated. It is not
allowed that the model uses malloc, calloc or other memory allocation functions. One
reason is that these functions might not be available for embedded systems on the target
machine. Another reason is that the environment may have optimized or specialized
memory allocation functions. allocateMemory returns a pointer to space for a vector of
nobj objects, each of size “size” or NULL, if the request cannot be satisfied. The space is
initialized to zero bytes (a simple implementation is to use calloc from the C standard
library).

Function freeMemory:
Pointer to a function that must be called in the model if memory is freed that has been
allocated with allocateMemory. If a NULL pointer is provided as input argument obj,
the function shall perform no action (a simple implementation is to use free from the
C standard library; in ANSI C89 and C99, the null pointer handling is identical as
defined here).
The functions allocateMemory and freeMemory can be ignored by slaves. This is
signalled by setting the capability flag canNotUseMemoryManagementFunctions.

fmiStatus fmiInitializeSlave(fmiComponent c, fmiReal tStart,
 fmiBoolean StopTimeDefined, fmiReal tStop);
 Informs the slave that the simulation run starts now.

The arguments tStart and tStop can be used to check whether the model is valid within
the given boundaries or to allocate memory which is necessary for storing results. If the
master tries to compute past tStop the slave returns fmiError.

fmiStatus fmiTerminateSlave(fmiComponent c);
 Is called by the master to signal the slave the end of the co-simulation run.

fmiStatus fmiResetSlave(fmiComponent c);
 Is called by the master to reset the slave after a simulation run. Before starting a new run,

fmiInitializeSlave is to be called.

void fmiFreeSlaveInstance(fmiComponent c);
 Disposes the given instance, unloads the loaded model, and frees all the allocated memory

and other resources that have been allocated by the functions of the co-simulation
interface.

fmiStatus fmiSetDebugLogging(fmiComponent c, fmiBoolean loggingOn);

 If loggingOn=fmiTrue, debug logging is enabled, otherwise it is switched off.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 27 of 57

3.2.1. Transfer of input / output values and parameters

Input and output variables are identified with a variable handle called “value reference”. The handle is
defined in the co-simulation description file (as “ValueReference” in element “ScalarVariable”). It is a
unique reference within each Slave instance for a scalar variable with respect to its base type (like
fmiReal) and is internal information of the slave.

fmiStatus fmiSetReal (fmiComponent c, const fmiValueReference vr[],

 size_t nvr, const fmiReal value[]);
fmiStatus fmiSetInteger(fmiComponent c, const fmiValueReference vr[],

 size_t nvr, const fmiInteger value[]);
fmiStatus fmiSetBoolean(fmiComponent c, const fmiValueReference vr[],

 size_t nvr, const fmiBoolean value[]);
fmiStatus fmiSetString (fmiComponent c, const fmiValueReference vr[],

 size_t nvr, const fmiString value[]);

 Set values of inputs. Argument vr is a vector of nvr value references that define the
variables that shall be set. Argument value is a vector with the actual values of these
variables. The slave has to copy the content of the value array if it needs them after
returning. The master may deallocate the array.

Restrictions on using the fmiSetXXX functions (see also section 3.3):

1. These functions can only be called after calling fmiInstantiateSlave(…) and
before fmiFreeSlave(...).

2. Besides (1), they can always be called on inputs (ScalarVariable.Causality = “input”).
3. For parameters (ScalarVariable.causality = “input” and ScalarVariable.variability =

“parameter”) the functions can only be called between fmiInstantiateSlave(...)
and fmiInitializeSlave(...).

If no set function is called for a variable it is initialized by the slave to its default value.

In order to enable the slave to interpolate the continuous real inputs between communication steps the
derivatives of the inputs with respect to time can be provided. To allow higher order interpolation also
higher derivatives can be set. Whether a slave is able to interpolate and therefore needs this information
is provided by the capability canInterpolateInputs.

fmiStatus fmiSetRealInputDerivatives(fmiComponent c,
 const fmiValueReference vr[],

 size_t nvr, const fmiInteger order[],
 const fmiReal value[]);

 Sets the n-th time derivative of real input variables. Argument “vr” is a vector of value
references that define the variables whose derivatives shall be set. The array “order”
contains the orders of the respective derivative (1 means the first derivative, 0 is not
allowed). Argument “value” is a vector with the values of the derivatives. “nvr” is the
dimension of the vectors.
Restrictions on using the function are the same as for the fmiSetReal function.

Inputs and their derivatives are set with respect to the beginning of a time step.

Output variables are handled in the same way using the following functions:

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 28 of 57

fmiStatus fmiGetReal(fmiComponent c, const fmiValueReference vr[],

 size_t nvr, fmiReal value[]);
fmiStatus fmiGetInteger(fmiComponent c, const fmiValueReference vr[],

 size_t nvr, fmiInteger value[]);
fmiStatus fmiGetBoolean(fmiComponent c, const fmiValueReference vr[],

 size_t nvr, fmiBoolean value[]);
fmiStatus fmiGetString(fmiComponent c, const fmiValueReference vr[],

 size_t nvr, fmiString value[]);

 Get actual values of variables by providing the variable handles.

To allow interpolation/approximation of the real output variables between communication steps (if they
are used as inputs for other slaves) the derivatives of the outputs with respect to time can be read.
Whether the slave is able to provide the derivatives of outputs is given by the unsigned integer capability
flag MaxOutputDerivativeOrder. It delivers the maximum order of the output derivative. If the actual
order is lower (because the order of integration algorithm is low), the retrieved value is 0.

Example: If the internal polynomial is of order 1 and the master inquires the second derivative of an
output, the slave will return zero.

The derivatives can be retrieved by:

fmiStatus fmiGetRealOutputDerivatives (fmiComponent c,
 const fmiValueReference vr[],

 size_t nvr, const fmiInteger order[],
 fmiReal value[]);

 Retrieves the n-th derivative of output values. Argument “vr” is a vector of “nvr” value
references that define the variables whose derivatives shall be retrieved. The array “order”
contains the order of the respective derivative (1 means the first derivative, 0 is not allowed).
Argument “value” is a vector with the actual values of the derivatives.
Restrictions on using the function are the same as for the fmiGetReal function.

The returned outputs correspond to the current slave time. E. g. after a successful fmiDoStep(...) the
returned values are related to the end of the time step.

This standard supports polynomial interpolation and extrapolation as well as more sophisticated signal
extrapolation schemes like rational extrapolation, see Appendix D.

3.2.2. Computation

The computation of time steps is controlled by the following function.

fmiStatus fmiDoStep(fmiComponent c, fmiReal currentCommunicationPoint,
 fmiReal communicationStepSize, fmiBoolean newStep);

 The computation of a time step is started.
The parameter currentCommunicationPoint is the current communication point of the master
(tci). Parameter communicationStepSize is the communication step size. If the master
carries out an event iteration the parameter communicationStepSize is zero. The
Parameter newStep is fmiTrue if the last communication step is accepted by the master

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 29 of 57

and a new communication step is started.
Depending on the internal state of the slave and the last call of fmiDoStep(...) the slave
has to decide which action is to be done before the step is computed.
The function returns:

• fmiOK - if the communication step was computed successfully until its end.
• fmiDiscard – if the slave computed successfully only a subinterval of the

communication step. The master can call the appropriate fmiGetXXXStatus functions
to get further information.

• fmiError – the communication step could not be carried out at all. The master can try
to repeat the step with other input values and/or an other communication step size.

• fmiPending – is returned if the slave executes the function in an asynchronous way.
That means the slave starts the computation but returns immediately. The master has
to call fmiGetStatus(...,fmiDoStep,...) to find out, if the slave is ready.
fmiCancelStep(...) can be called to cancel the current computation. It is not
allowed to call any other function during a pending fmiDoStep(…).

fmiStatus fmiCancelStep(fmiComponent c);
 Can be called if fmiDoStep returned fmiPending in order to stop the current asynchronous

execution. The master calls this function if e.g. the co-simulation run is stopped by the user
or one of the slaves. Afterwards it is only allowed to call the functions fmiTerminateSlave,
fmiResetSlave, or fmiFreeSlaveInstance.

It depends on the capabilities of the slave which parameter constellations and calling sequences are allowed
(see 3.5.1).

3.2.3. Retrieving of Status Information from the Slave

Status information is retrieved from the slave by the following functions:

fmiStatus fmiGetStatus(fmiComponent c, const fmiStatusKind s,
 fmiStatus* value);
fmiStatus fmiGetRealStatus(fmiComponent c, const fmiStatusKind s,
 fmiReal* value);
fmiStatus fmiGetIntegerStatus(fmiComponent c, const fmiStatusKind s,
 fmiInteger* value);
fmiStatus fmiGetBooleanStatus(fmiComponent c, const fmiStatusKind s,
 fmiBoolean* value);
fmiStatus fmiGetStringStatus(fmiComponent c, const fmiStatusKind s,
 fmiString* value);

 Informs the master about the actual status of the simulation run. Which status information is
to be returned is specified by the argument fmiStatusKind. It depends on the capabilities
of the slave which status information can be given by the slave (see 3.5.1). If a status is
required which cannot be retrieved by the slave it returns fmiDiscard.

typedef enum {fmiDoStepStatus,
 fmiPendingStatus,
 fmiLastSuccessfulTime,
 } fmiStatusKind;
 Defines which status is inquired.

The following status information can be retrieved from a slave:

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 30 of 57

Status Type of retrieved
value

Description

fmiDoStepStatus fmiStatus Can be called when the fmiDoStep function returned
fmiPending. The function delivers fmiPending if the
computation is not finished. If the computation is
finished meanwhile the function returns the result of
the asynchronous executed fmiDoStep(...) call.

fmiPendingStatus fmiString Can be called when the fmiDoStep function returned
fmiPending. The function delivers a string which
informs about the status of the currently running
asynchronous fmiDoStep computation.

fmiLastSuccessfulTime fmiReal Returns the time until the last communication step was
computed successfully. Can be called after
fmiDoStep(...) returned fmiDiscard.

...

3.3. State Machine of Calling Sequence from Master to Slave

The following state machine demonstrates the possible calling sequence. The following abbreviations
are used:

• fmiFunc(...) is one of the functions fmiGetVersion(), fmiGetTypesPlatform(),
fmiSetDebugLogging(...)

• XXX is one of Real, Integer, Boolean, String

• ts, tm, h are internal variables of the slave

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 31 of 57

Figure 15: State-machine for the calling sequence of co-simulation interface C-functions

3.4. Pseudo Code Example

In the following example, the usage of the FMI functions is sketched in order to clarify the typical calling
sequence of the functions in a simulation environment. The example is given in a mix of pseudo-code
and “C”, in order to keep it small and understandable. We consider two slaves. Both have one
continuous real input and one continuous real output which are connected in the following way:

Figure 16: Connection graph of the slaves

We assume no algebraic dependency between input and output of each slave. The slaves do not support
asynchronous execution of fmiDoStep(...). The code demonstrates the simplest master algorithm as
shown in section 2.2.5.

• Constant communication step size.

• No repeating of communication steps.

• The slaves do not support asynchronous execution of fmiDoStep.

The error handling is implemented in a very rudimentary way.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 32 of 57

//////////////////////
//Initialization sub-phase

//Instantiate both slaves
fmiComponent s1 = fmiInstantiateSlave("Tool1", "", "Model1", "", ...);
fmiComponent s2 = fmiInstantiateSlave("Tool1", "", "Model2", "", ...);
// tStart needs to be between startTime and stopTime from the XML-file
tStart = 0;
// tStop needs to be between startTime and stopTime from the XML-file
tStop = 10;
// communication step size
h = 0.01;

//Initialize slaves
status = fmiInitializeSlave(s1, tStart, fmiTrue, tStop);
if(status == fmiOK)
 ret = fmiInitializeSlave(s2, tStart, fmiTrue, tStop);

//////////////////////
//Simulation sub-phase

//Current master time
tc = tStart;

while((tc < tStop) && (status == fmiOK))
 //retrieve outputs
 fmiGetReal(s1, ..., 1, &y1);
 fmiGetReal(s2, ..., 1, &y2);
 //set inputs
 fmiSetReal(s1, ..., 1, &y2);
 fmiSetReal(s2, ..., 1, &y1);

 //call slaves
 status = fmiDoStep(s1, tc, h, fmiTrue);
 if(status == fmiOK)
 status = fmiDoStep(s2, tc, h, fmiTrue);

 //increment master time
 tc+=communicationStepSize;
}

//////////////////////
//Shutdown sub-phase
if (status == fmiOK)
{
 fmiTerminateSlave(s1);
 fmiTerminateSlave(s1);
 //Reset slaves
 fmiResetSlave(s1);
 fmiResetSlave(s2);
}

if (status != fmiFatal)
{
 //cleanup slaves
 fmiFreeSlaveInstance(s1);
 fmiFreeSlaveInstance(s2);
}

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 33 of 57

3.5. The Co-Simulation Description Schema

The FMI for co-simulation reuses the XML schema encoding conventions and data types as defined by
the FMI for model exchange (in section 3).

However, there are two important differences:

The “fmiModelDescription.xsd” definition has been modified to include an Implementation element. 1.

2. An additional schema file “fmiImplementation.xsd” has been added to include the elements required
to support co-simulation description.

The following sections describe the amendments made to the fmiModelDescription schema and

detailed information related to the co-simulation implementation element (fmiImplementation).

3.5.1. Description of a Model for Co-Simulation (fmiModelDescription)

The FMI for Co-Simulation modifies the model description format of FMI for Model Exchange, by
appending an Implementation element; the reader is referred to section 3.1 of FMI for Model
Exchange specification to understand the details of the top level description.

The Implementation element is optional; if present, the import tool should understand the model

description as applying to co-simulation. As a consequence, the import tool must select the proper FMI
API. The “attributes” part of fmiModelDescription is not changed.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 34 of 57

3.5.2. Definition of an Implementation

An ‘Implementation’ in the co-simulation context can be either CoSimulation_Tool or

CoSimulation_StandAlone.

The main difference between these implementations relates to the existence of the original model. A tool
execution requires that the original tool is available to be executed in co-simulation mode; in a stand-
alone execution, the slave is completely contained inside the FMU in source code or binary format
(shared library).

The Implementation element can have one of the element choices CoSimulation_StandAlone or

CoSimulation_Tool, which are described in the following table.

Name Description

CoSimulation_StandAlone This element is used when “FMI for Co-Simulation” code

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 35 of 57

generators are used to transfer models into compilable source
code. The slave is available either in source code form or
binary format (shared library or executable).

CoSimulation_Tool This element is used when a slave simulation tool implements
the “FMI for Co-Simulation” API and models can be directly
executed without code generation being required.

The Element CoSimulation_StandAlone consists of a Capabilities element, the element

CoSimulation_Tool consists of a sequence of Capabilities and Model elements.

The elements Capabilities and Model are described in the following sections.

3.5.2.1. Capability Flags

The Capabilities element is based on the type definition fmiCoSimulationCapabilities, which is
defined as follows.

The Capabilities element can contain the following optional attributes.

Attribute Name Description
canHandleVariableCommunicationStepSize The slave can handle variable communication

step size. The communication step size
(parameter communicationStepSize of
fmiDoStep(...)) has not to be constant for
each call.

canHandleEvents The slave supports event handling during co-
simulation. The communication step size

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 36 of 57

(parameter communicationStepSize of
fmiDoStep(...)) can be zero.

canRejectSteps This flag indicates the slave’s capability to
discard and repeat a communication step. The
parameter newStep of fmiDoStep(...) can
be fmiFalse. The parameter
currentCommunicationTime can be constant
in consecutive fmiDoStep(...) calls.

canInterpolateInputs The slave is able to interpolate continuous
inputs. Calling of
fmiSetRealInputDerivatives(...) has an
effect for the slave.

maxOutputDerivativeOrder The slave is able to provide derivatives of
outputs with maximum order. Calling of
fmiGetRealOutputDerivatives(...) is
allowed.

canRunAsynchronuously This flag describes the ability to carry out the
fmiDoStep(...) call asynchronously.

canSignalEvents If a slave is able to provide information about
events during a communication step, this flag
has to be set true.

canBeInstantiatedOnlyOncePerProcess This flag indicates cases (especially for
embedded code), where only one instance per
FMU is possible
(multiple instantiation is default = false; if
multiple instances are needed, the FMUs must
be instantiated in different processes).

canNotUseMemoryManagementFunctions If true, the slave uses its own functions for
memory allocation and freeing only. The
callback functions allocateMemory and
freeMemory given in fmiInstantiateSlave
are ignored.

All flags are optional. The flags have the following default values.

• boolean: false

• unsignedInt: 0

3.5.2.2. Model description

The Element Model is based on the type definition fmiCoSimulationModel, which is defined as
follows.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 37 of 57

Attribute Name Description
entryPoint The URI of the model to be executed by the slave simulator. Examples of

URIs are:
• “fmu://resources/model/controller.mdl” refers to a

model within the FMU archive.
• “file://c:/model/controller.mdl” refers to a model

located externally to the FMU archive.
• “http://myserver:6456/models/controller.mdl” refers to

a model accessible via a web server.

manualStart Indicates whether the model should be manually loaded and started by the
user on the slave simulator. By providing this flag, the master tool can
choose the adequate start sequence on the master side. By default, this
flag is set to false.

type A mime type that indicates the needed simulator and FMI wrapper for a
simulator that needs to be started to instantiate an FMI Component.

In some cases, several model files may be transported, e.g. calibration files. In a tool coupling scenario,
the master tool may need to know, which model needs to be opened to get the top level system.

Element Model contains an optional sequence of File elements. Each File element is used to

represent an additional file required by the slave simulator.
Attribute Name Description
file The URI of a file needed by the slave simulator to execute the native

model. An example of file URI entry is
“fmu://resources/model/myReferencedModel.mdl” that refers to a
model within the FMU archive.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 38 of 57

4. Model Distribution

The major part of this section is directly taken from the specification document FMI for Model Exchange,
as FMI for Co-Simulation builds upon concepts of the previous. Additional remarks will point out, where
changes were made specifically for the co-simulation case.

An FMU description consists of several files. An FMU may be distributed in textual and/or in binary
format. All relevant files are stored in a zip-file with a pre-defined structure. The name of the zip-file must
be identical to the “modelIdentifier” stored as xml-attribute in the Model Description File and used as
defined symbol MODEL_IDENTIFIER with header file fmiFunctions.h. The extension of the zip-file
must be “.fmu”, e.g., “HybridVehicle.fmu”. The compression method used for the zip-file must be “deflate”
(most free tools, e.g. zlib, offer only the common compression method "deflate").

Every FMU is distributed by its own zip-file. This zip-file has the following structure:

// Structure of zip-file of an FMU
modelDescription.xml // Description of model (required file)
model.png // Optional image file of model icon
documentation // Optional directory containing the model documentation
 _main.html // Entry point of the documentation
 <other documentation files>
sources // Optional directory containing all C-sources
 // all needed C-sources and C-header files to compile and link the model
 // with
binaries // Optional directory containing the binaries

exception of: fmiPlatformTypes.h and fmiFunctions.h

 win32 // Optional binaries for 32-bit Windows
 <modelIdentifier>.dll // DLL of the model interface implementation
 // Optional object
 VisualStudio8 // Binaries for 32-bit Windows generated with

 Libraries for a particular compiler

 // Microsoft Visual Studio 8 (2005)
 <modelIdentifier>.lib // Binary libraries
 gcc3.1 // Binaries for gcc 3.1
 ...
 win64 // Optional binaries for 64-bit Windows

 ...
 linux32 // Optional binaries for 32-bit Linux
 ...
 linux64 // Optional binaries for 64-bit Linux
 ...
resources // Optional resources needed by the model
 < data in model specific files which will be read during initialization >

The FMU must be distributed with at least one implementation, i.e., either sources or one of the binaries
for a particular machine1. It is also possible to provide the sources and binaries for different target
machines altogether in one zip-file. The names “win32”, “win64”, “linux32”, “linux64” are standardized, as
well as the names “VisualStudioX” and “gccX” that define the compiler with which the binary has been
generated. Further names can be introduced by vendors. Typical scenarios are to provide binaries only
for one machine type (e.g. on the machine where the target simulator is running and for which licenses
of run-time libraries are available) or to provide only sources (e.g. for translation and download for a
particular micro-processor). If run-time libraries cannot be shipped due to licensing, special handling is
needed, e.g., by providing the run-time libraries at appropriate places by the receiver.

1 Note that the implementation can be either according to FMI for Model Exchange or FMI for Co-Simulation. For the second, see

section 3.5.2 for details. Appendix B gives an outlook of a possible future generalization.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 39 of 57

FMI for Co-Simulation provides the means for two kinds of implementation: CoSimulation_Tool and

CoSimulation_StandAlone. In the first scenario a slave tool specific wrapper dll has to be provided as
the binary, in the second a compiled or source code version of the model with its solver is stored (see
section 2.1 for details).

In directory “resources”, additional data can be provided in model specific formats, typically for tables

and maps used in the model. This data must be read into the model at the latest during initialization
(fmiInitializeSlave). The actual file names in the zip-file to access the data files can either be hard-
coded in the generated model functions, or the file names can be provided as string parameters via the
fmiSetString function (see Functional Mock-up Interface for Model Exchange MODELISAR (ITEA 2 - 07006)

January 26, 2010 Page 41 of 56).

In the case of a co-simulation implementation of CoSimulation_Tool type, the “resources“ directory can

contain the model source file in the tool specific file format.

Note that the header files fmiPlatformTypes.h and fmiFunctions.h are not included in the FMU
due to the following reasons:

fmiPlatformTypes.h makes no sense in the “sources” directory, because if sources are provided,

then the target simulator defines this header file and not the FMU. This header file is not included in the
“binaries” directory, because it is implicitly defined by the platform directory (e.g. win32 for 32-bit
machine or linux64 for 64-bit machine). Furthermore, the version that was used to construct the FMU can
also be inquired via function fmiGetModelTypesPlatform().

fmiFunctions.h is not needed in the “sources” directory, because it is implicitly defined by atttribute

fmiVersion in file modelDescription.xml. Furthermore, in order that the C-compiler can check for

consistent function arguments, the header file from the target simulator should be used when compiling
the C-sources. It would therefore be counter productive (unsafe), if this header file would be present.
This header file is not included in the “binaries” directory, since this header file was already utilized to

build the target simulator executable. Via attribute fmiVersion in file modelDescription.xml or via

function call fmiGetVersion() the version number of this header file used to construct the FMU can be
deduced.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 40 of 57

5. Literature

AMESim: www.lmsintl.com/

AUTOSAR: www.autosar.org

Dymola: www.dynasim.se

EXITE: www.extessy.com

R. Kübler, W. Schiehlen: Two methods of simulator coupling. - Mathematical and Computer Modelling of
Dynamical Systems 6(2000)93-113.

MODELISAR Glossary (2009): MODELISAR WP2 Glossary and Abbreviations. Version 1.0, June 9, 2009.

MODELISAR 2010: Functional Mock-up Interface for Model Exchange, Version 1.0, January 26, 2010,
http://www.functional-mockup-interface.org/fmi.html

Silver: www.qtronic.de/de/silver.html

Simpack: www.simpack.com

SimulationX: www.simulationx.com

XML: www.w3.org/XML, en.wikipedia.org/wiki/Xml

http://www.lmsintl.com/
http://www.autosar.org/
http://www.dynasim.se/
http://www.extessy.com/
http://www.functional-mockup-interface.org/fmi.html
http://www.qtronic.de/de/silver.html
http://www.simpack.com/
http://www.simulationx.com/
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Xml

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 41 of 57

Appendix A Contributors

A.1 Version 1.0

The Functional Mock-up Interface subproject inside MODELISAR was initiated and organized by
Daimler AG. The development FMI for Co-Simulation version 1.0 was performed within WP200 of the
MODELISAR ITEA2 project, organized by the WP200 work package leader Dietmar Neumerkel
(Daimler). FMI for Co-Simulation was developed in three subgroups: “Solver Coupling” headed by Martin
Arnold (University Halle) and Torsten Blochwitz (ITI), “Tool Coupling” headed by Jörg-Volker Peetz
(Fraunhofer SCAI), and “Control Logic” headed by Manuel Monteiro (Atego). The essential part of the
design of this version was performed by (alphabetical list):

Martin Arnold, University Halle, Germany
Constanze Bausch, Atego Systems GmbH, Wolfsburg, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany
Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany
Manuel Monteiro, Atego Systems GmbH, Wolfsburg, Germany
Thomas Neidhold, ITI GmbH, Dresden, Germany
Jörg-Volker Peetz, Fraunhofer SCAI, St. Augustin, Germany
Susann Wolf, Fraunhofer IIS EAS, Dresden, Germany

This version was evaluated with prototypes implemented for (alphabetical list):

SimulationX by Torsten Blochwitz and Thomas Neidhold (ITI GmbH),
Master algorithms by Christoph Clauß (Fraunhofer IIS EAS)

The following MODELISAR partners participated at FMI design meetings and contributed to the
discussion (alphabetical list):

Martin Arnold, University Halle, Germany
Jens Bastian, Fraunhofer IIS EAS, Dresden, Germany
Constanze Bausch, Atego Systems GmbH, Wolfsburg, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany
Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany
Manuel Monteiro, Atego Systems GmbH, Wolfsburg, Germany
Thomas Neidhold, ITI GmbH, Dresden, Germany
Dietmar Neumerkel, Daimler AG, Böblingen, Germany
Martin Otter, DLR, Oberpfaffenhofen, Germany
Jörg-Volker Peetz, Fraunhofer SCAI, St. Augustin, Germany
Tom Schierz, University Halle, Germany
Klaus Wolf, Fraunhofer SCAI, St. Augustin, Germany

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 42 of 57

Appendix B Features for Future Versions

In this appendix, features are summarized that are already known to be missing and might be added in a
future release.

Event Handling

Event Handling is not supported at the moment. Modelisar SWP202 will work on event handling
algorithms. Useful extensions could be:

fmiEventHappened fmiBoolean Delivers fmiTrue if during computation of the last
communication step a discontinuity happened, that affects an
output. Is delivered only if the capability flag
canSignalEvents is set.

fmiEventTime fmiReal Time of the event, happened during the last communication
step. Is delivered only if the capability flag canSignalEvents
is set.

Other extensions are e.g. error criteria of the slave which can be used for sophisticated co-simulation
master algorithms.

Efficient Handling of Time Events

We postpone the efficient handling of time events in order to avoid overloading of the discussion.
Efficient time event handling should be developed together with the FMI ME.

The efficient and numerical robust handling of time events is essential to include controller algorithms in
a co-simulation scenario. At first we consider time events with a constant sample rate. The number of
sample rates is defined in the slave description file.

fmiStatus fmiGetSampleRates(fmiComponent c, const fmiSampleRateInfo st[]);
 Retrieves the sample rates of the slave. Parameter “st” is an array of fmi

fmiSampleRateInfo structures. The dimension of the array has to be consistent with the
number of sample rates given in the slave description file. The function can be called after
fmiLoadModel and must be called before the simulation run is started.

typedef struct {
 fmiInteger expTimeBase;
 fmiUnsigned startTime;
 fmiUnsigned sampleRate;
 } fmiSampleRateInfo;

 This structure contains the information about one sample rate of the slave. To avoid
inaccuracies an integer representation is used. The sample rate and start time are defined
by integer multipliers of a time base. The time base is given by its exponent of base 10.

 This structure contains the information about one sample rate of the slave:

• expTimeBase: is the exponent of 10 of the time base in seconds

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 43 of 57

• startTime: defines the occurrence of the first sample hit
• startTime: defines the sample rate

The startTime counts from the start time of the simulation run. It is defined by the parameter
tStart of fmiInitializeSlave(...).

A sample rate of 10 ms is e.g. given by:

• base=-3
• sampleRate=10

or:

• base=-4
• sampleRate=1

Remark: In the Modelica Language Design group a discussion about integer time
representation (at least for a numerical robust definition of time events) is going on. Here
we think about using (similar to SPICE or VHDL) special characters (‘n’… nano, ‘u’… mikro,
‘m’... mili, ...) of the time base. This would be a possibility too.

Possibly we should consider how sample rates are specified in AUTOSAR.

If the slave exposes at least one sample rate it has to be informed by the master when the sample time
instance is achieved:

fmiStatus setSampleTimeStatus(fmiComponent c, const fmiBoolean* s[]);

 Informs the model if one of the sample times is reached. “s” is a boolean array. The
dimension of the array has to be consistent with the number of sample rates given in the
slave description file. If one of the sample time instances is reached the corresponding
element in “s” is set to fmiTrue.

Can be called by the master after an event step is signaled by a call of
fmiSetBooleanStatus(s, fmiEvent, fmiTrue).

Sample time instances are defined by:
ts = startTime*10expTimeBase+i*sampleRate*10expTimeBase

(i=0,1...)

Discarding and Repeating of Communication Steps

If the slave sets the capability flag canRejectSteps to fmiTrue the master can use more sophisticated
co-simulation algorithms which require the repeating of communication steps. Currently the master
signals that by calling fmiDoStep with parameter newStep = fmiFalse. In this case the slave has to
reject its last computed communication step and repeat the computation.

This mechanism is not efficient for the following use case. If a master will only go forward, the slave
should be informed about that. Otherwise it has to store its state at the beginning of each computation of
a communication step, because the next fmiDoStep call could require a discarding of the last
communication step. This could be time consuming. It would be better to have special functions for

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 44 of 57

storing and restoring several states of the slave, e.g.:
 fmiSaveState(fmiComponent c, size_t index)

 fmiRestoreState(fmiComponent c, size_t index)

which can be called explicitly by the master. The parameter index identifies which state the slave has to
restore.

Also for usage of FMU's in training simulators (e.g. for nuclear power plants) an explicit save and restore
mechanism could be useful. The training master (a human being) may want to have a snap shot at a
particular time point in order to restart from this point at some other time instant.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 45 of 57

Appendix C Further Examples for Simulator Coupling

In the following, two further examples demonstrating the coupling of three simulators are given in a mix
of pseudo-code and “C”.

C.1 Example 1: Parallel simulation and input/output of different kinds

The three slaves are connected in the following way:

s[0]

s[1]

s[2]

yr[0]

yi[0]

ur[0]

ui[0]

ur[1]yr[0]

Figure 17: Connection graph of the slaves of example 1

Simulator s[0] has one continuous real output yr[0], simulator s[1] has one continuous real output yr[0]
and one integer output yi[0], and simulator s[2] has two real inputs ur[0], ur[1] and one integer input ui[0].
Simulators s[0] and s[1] have the same priority and there does not exist a cycle, so that both simulators
can work in parallel.

C.2 Example 2: Cycle (feedback)

The three slaves are connected in the following way:

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 46 of 57

s[0]

s[1] s[2]

yr[0]

yr[0]

ur[0]

ur[0]

ur[0]yr[1]

Figure 18: Connection graph of the slaves of example 2

Simulator s[0] has one continuous real input ur[0] and one continuous real output yr[0], simulator s[1]
has one continuous real input ur[0] and two continuous real outputs yr[0] and yr[1], and simulator s[2]
has one real inputs ur[0]. Simulators s[0] and s[1] have the same priority but this time a cycle exists, so
that both simulators cannot work in parallel.

C.3 Pseudo Code for both examples

The code demonstrates a more elaborate master algorithm than shown in section 2.2.5.

• Constant communication step size.

• Repeating of communication steps / iteration.

• Parallelization / multiple threads

The error handling is again implemented in a very rudimentary way.

////////////////////////
// Initialization sub-phase

// Graph structure (taken from configuration file)
// Number of slaves
nsim = 3;
// Priority of slaves 0...nsim-1
priority[0] = 0;
priority[1] = 0;
priority[2] = 1;
// At priority i do cycles exist? yes: cycles[i] = 1, no: cycles [i] = 0
cycles[1] = 0;
#ifdef Example1
cycles[0] = 0;
#else
cycles[0] = 1;
#endif
// Read the ModelDescription XML files of the FMUs
// Instantiate slaves

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 47 of 57

for (i = 0; i < nsim; ++i) {
 s[i]->component = fmiInstantiateSlave("Instance_i", "", "FMU_i.dll",
 "",...);
 if (s[i]->component == NULL)
 // error
}
// tStart needs to be between startTime and stopTime from the XML-file
tStart = 0;
// tStop needs to be between startTime and stopTime from the XML-file
tStop = 10;
// Communication step size
h = 0.01;
// Number of inputs and outputs of slave s[i] (taken from XML-file),
// n[u|y][r|i|b|s] is the number of components of [real|integer|boolean|string]
// [input|output] array [u|y][r|i|b|s]
#ifdef Example1
s[0]->nyr = 1;
s[1]->nyr = 1;
s[1]->nyi = 1;
s[2]->nur = 2;
s[2]->nui = 1;
#else
s[0]->nur = 1;
s[0]->nyr = 1;
s[1]->nur = 1;
s[1]->nyr = 2;
s[2]->nur = 1;
#endif

// Initialize slaves
for (i = 0; i < nsim; ++i) {
 status = fmiInitializeSlave(s[i]->component, tStart, fmiTrue, tStop);
 if (status != fmiOK)
 // error
}

////////////////////
// Simulation sub-phase

// Current master time
tc = tStart;

while ((tc < tStop) && (status == fmiOK)) {
 // Zero communication step size at first step and for event iteration
 if (firstStep || event)
 hStep = 0;
 else
 hStep = communicationStepSize;
 // Call slaves regarding priority
 for (prior = 0; prior < maxPriority; ++prior) {
 if (cycles[prior] == 0) { // no cycle, parallel execution of slaves
 // Call slaves of priority prior
 for (i = 0; i < nsim; ++i)
 if (priority[i] == prior) {
 // Open thread
 // Set inputs for slaves of priority prior
 fmiSetReal(s[i]->component, ..., s[i]->nur,
 s[i]->ur);
 fmiSetInteger(s[i]->component, ..., s[i]->nui,
 s[i]->ui);
 status = fmiDoStep(s[i]->component, tc, hStep,

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 48 of 57

 fmiTrue);
 if (status == fmiError || status == fmiFatal)
 // error
 // Retrieve outputs for slaves of priority prior
 fmiGetReal(s[i]->component, ..., s[i]->nyr,
 s[i]->yr);
 fmiGetInteger(s[i]->component, ..., s[i]->nyi,
 s[i]->yi);
 // Close thread
 }
 } else { // cycle, serial execution of slaves, iteration
 itSteps = 0;
 newStep = fmiTrue;
 // Iteration
 do {
 ++itSteps;
 // Backup of values exchanged between slaves for error
 // check
 oldValues = values;
 // Call slaves of priority prior
 for (i = 0; i < nsim; ++i)
 if (priority[i] == prior) {
 // Set inputs for slaves of priority prior
 fmiSetReal(s[i]->component, ..., s[i]->nur,
 s[i]->ur);
 fmiSetInteger(s[i]->component, ...,
 s[i]->nui, s[i]->ui);
 status = fmiDoStep(s[i]->component, tc,
 hStep, newStep);
 if (status==fmiError || status==fmiFatal)
 // error
 // Get outputs for slaves of priority prior
 fmiGetReal(s[i]->component, ..., s[i]->nyr,
 s[i]->yr);
 fmiGetInteger(s[i]->component, ...,
 s[i]->nyi, s[i]->yi);
 }
 newStep = fmiFalse;
 // Check error between old and new values of iteration
 err = errorCheck(values, oldValues);
 } while (err > 0 && itSteps < maxItSteps);
 }
 }
 //increment current master time
 tc += hStep;
}

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 49 of 57

//////////////////////
// Shutdown sub-phase
if (status == fmiOK) {
 // Terminate slaves
 for (i = 0; i < nsim; ++i)
 fmiTerminateSlave(s[i]->component);
 // Reset slaves
 for (i = 0; i < nsim; ++i)
 fmiResetSlave(s[i]->component);
}

if (status != fmiFatal)
 // Cleanup slaves
 for (i = 0; i < nsim; ++i)
 fmiFreeSlaveInstance(s[i]->component);

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 50 of 57

Appendix D Higher Order Signal Extrapolation

Within each communication step the slave inputs are approximated using function

values at and possibly up to

1+→ ii tctc)(tu

itct = 1−r more previous communication points

 for some riii tcttcttct −+−− === 121 ..., , , 1>r . In a serial implementation, it is even possible that some

slaves may use function values at the new communication point .)(tu 1+= itct

In most co-simulation algorithms, polynomial approximations of slave inputs are used:

• Constant (“zero order”) extrapolation based on data at : itct =

 , () ,)(:)()(0,E itcututu =≈ 1+≤≤ ii tcttc

• Linear (“first order”) extrapolation based on data at and : 1−= itct itct =

 with))(()(:)()(1,E iii tcttcutcututu −+=≈
1

1)()(
:)(

−

−

−
−

=
ii

ii
i tctc

tcutcu
tcu , () , 1+≤≤ ii tcttc

• Linear (“first order”) interpolation based on data at and : itct = 1+=t itc

 with))(()(:)()(1,I iii tcttcutcututu −+=≈
ii

ii
i tctc

tcutcu
tcu

−
−

=
+

+

1

1)()(
:)(, () , 1+≤≤ ii tcttc

• Quadratic (“second order”) extrapolation based on data at , and : 2−= itct 1−= itct itct =

 ()22,E)(
2
1))(()(:)()(iiiii tcttcutcttcutcututu −+−+=≈ , () with 1+≤≤ ii tcttc

 ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
−
−

= −

−−

−−

−

−

2
)()()()(

:)(2

21

21

1

1 ii

ii

ii

ii

ii
i

tctc
tctc

tcutcu
tctc

tcutcu
tcu and

))((
2
1)()(

:)(1
1

1
−

−

− −+
−
−

= iii
ii

ii
i tctctcu

tctc
tcutcu

tcu ,

• Quadratic (“second order”) interpolation based on data at , and : 1−= itct itct = 1+=t itc

 ()22,I)(
2
1))(()(:)()(iiiii tcttcutcttcutcututu −+−+=≈ , () with 1+≤≤ ii tcttc

 ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
−
−

= −+

−

−

+

+

2
)()()()(

:)(11

1

1

1

1 ii

ii

ii

ii

ii
i

tctc
tctc

tcutcu
tctc

tcutcu
tcu and

))((
2
1)()(

:)(1
1

1
iii

ii

ii
i tctctcu

tctc
tcutcu

tcu −−
−
−

= +
+

+

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 51 of 57

and so on. In all these examples, a Nordsieck like representation of the interpolating and extrapolating

polynomials was used that expresses the approximation of in terms of powers of with

coefficients being defined by difference quotients of u . Note, that the denominators of these difference

quotients may be further simplified in the case of equidistant communication points

 with fixed communication step size :

)(tu)(itct −

... , , , , 112 +−− iiii tctctctc hc

... ,
22

 , 211
2111 hctctctctchctctctctctctc iiii

iiiiii =
−

=
−

=−=−=− −−+
−−−+ .

The Nordsieck like representation of the slave inputs is favourable since it abstracts from algorithmic

details (like data interpolation vs. data extrapolation) and requires at a communication point just

the transfer of the derivative vector

itct =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(),...,(),(),(ik

k

iii tc
dt

udtcutcutcu from master to slave to define

the extrapolated or interpolated slave inputs in communication step . For polynomial

slave inputs , the length of this derivative vector determines the degree k of the polynomial

and the components of the derivative vector contain in increasing order the coefficients of

)(tu 1+→ ii tctc

)(tu 1+k

!)(jtct j
i−

for : kj ,...,1,0=

∑
=

−≈
k

j

j
iij

j

tcttc
dt

ud
j

tu
0

)()(
!

1)(.

The Nordsieck representation of polynomials is not restricted to classical interpolation polynomials but
may be used as well for more sophisticated co-simulation techniques like the extrapolated interpolation
(S. Dronka, J. Rauh: Co-Simulation-Interface for User-Force-Elements. – SIMPACK User Meeting 2006,
http://www.simpack.com/uploads/media/um06_dc_research-dronka_05.pdf) or interpolated extrapolation
of slave inputs. Also the extension to interpolation by rational functions and related approaches is
straightforward.

Practical experience and recent theoretical investigations (M. Arnold: Stability of sequential modular time
integration methods for coupled multibody system models. - Journal of Computational and Nonlinear
Dynamics, 5(2010)031003, doi:10.1115/1.4001389) show that higher order signal extrapolation
increases the risk of numerical instability in co-simulation. Therefore, polynomial signal extrapolation is
typically restricted to constant, linear or quadratic polynomials. In principle, however, interpolation
polynomials of arbitrary degree could be computed and evaluated very efficiently using their Newton
representation that may be found in any textbook on numerical mathematics. The coefficients

 of the Nordsieck representation are obtained by Taylor expansion of the interpolation

polynomial at .

...),(),(ii tcutcu

itct =

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 52 of 57

Appendix E Communication Step size Control

In contrast to classical (mono-disciplinary) simulation techniques in system dynamics, state-of-the-art

master algorithms in co-simulation are even today based on constant communication step sizes hc and

do not provide any automatic error control. Constant communication step sizes may restrict strongly the
efficiency of co-simulation algorithms if the solution behavior changes considerably during time

integration. Furthermore, the selection of an “optimal” constant communication step size hc requires

much practical experience or time-consuming numerical tests.

Therefore, error control and the adaptive selection of (variable) communication step sizes may

contribute to more reliable and more efficient master algorithms. The basic ideas of classical step size
control in time integration are described in great detail in the literature on numerical solution of ordinary
differential equations (U. Ascher, L.R. Petzold: Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. - SIAM Philadelphia, 1998). The practical implementation in the
explicit Runge-Kutta code DOPRI5 (

ihc

http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f) may be
considered as an advanced reference implementation in classical ODE time integration.

Step size control is based on the component based comparison of an error estimate EST with user

defined bounds , in each time step: ATOL RTOL

 ∑
= ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

m

j jjj

j

ym 1

2

 RTOLATOL
EST

 1 :err .

The error indicator err shows if the (estimated) error EST is below the given error bounds ATOL ,

 (resulting in). If , then the (estimated) error is too large and the current step

should be repeated with smaller step size.

RTOL 1err ≤ 1err >

The crucial part of this error control strategy is the efficient evaluation of a reliable error estimate EST

that may be obtained comparing two numerical solutions of different accuracy. In ODE and DAE time

integration, the nominal numerical solution in a time step hTT +→ is compared

• with the predictor of a linear multistep method in predictor-corrector form,

• with an embedded Runge-Kutta solution of different order in the case of Runge-Kutta methods or

• with the result of two time steps of reduced step size (2/hTT +→ and hThT +→+ 2/ ,

Richardson extrapolation).
The details of an efficient implementation are sophisticated, see the above given references. The use of
Richardson extrapolation for communication step size control in co-simulation is discussed in (R. Kübler:
Modulare Modellierung und Simulation mechatronischer Systeme. Fortschritt-Berichte VDI Reihe 20, Nr.
327. VDI-Verlag Düsseldorf, 2000).

In the context of co-simulation, vector should estimate in each communication step all

errors in the slave outputs that result from the use of approximated slave inputs

EST 1+→ ii tctc

)(1+itcy

http://www.unige.ch/%7Ehairer/prog/nonstiff/dopri5.f

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 53 of 57

)(),(1+≤≤ ii tcttctu . Then, the error indicator err shows if the communication step size was

sufficiently small to meet some user defined error bounds ATOL , or not. Furthermore, the ratio

between the error indicator er

ihc

RTOL
r and its optimal value 1.0 may be used to define a posteriori an “optimal”

communication step size : opthc

1
1

opt
1 :

+
⎟
⎠
⎞

⎜
⎝
⎛=

k

i err
hchc α

]9with a safety factor .0,8.0[∈α and denoting the approximation order of the signal extrapolation for

slave inputs . Note, that is always smaller than the current communication step size if the

error estimate exceeds the given tolerances (err).

k

)(tu opthc ihc

EST 1>

If all slaves in a co-simulation environment support variable communication step sizes (capability

flag canHandleVariableCommunicationStepSize), then the master algorithm may use this optimal

communication step size for the next communication step with

. (At least) a warning message should be generated whenever the error indicator er

ihc

opthc 1121 : ++++ +=→ iiii hctctctc

opt1 : hchci =+ r

exceeds its critical value 1.0.

In a really error controlled master algorithm, however, a communication step resulting in an error

indicator has to be repeated with smaller communication step size (“rejected” communication

steps). FMI for Co-Simulation supports such step rejections by repeated calls of fmiDoStep(…) with one

and the same input parameter currentCommunicationPoint and different input parameters

communicationStepSize. To keep the discussion in this appendix compact the parameters

currentCommunicationPoint and communicationStepSize are abbreviated by and ,

respectively. I.e., fmiDoStep(…) is called to perform one communication step .

1err >

M
curt curh

cur
M
cur

M
cur htt +→

In a practical implementation of advanced error controlled master algorithms, all slaves of the co-
simulation environment have to support repeated calls with one and the same current communication

time and different communication step sizes (capability flag canRejectSteps). It is mandatory

for a successful co-simulation with communication step size control that all slaves in the co-simulation
environment guarantee that repeated calls of fmiDoStep(…) with identical input data (i.e. with identical

 and and identical slave inputs) result in exactly identical output data. Therefore, the

capability to discard and to repeat communication steps (capability flag canRejectSteps) requires
substantial modifications and extensions of existing simulation software that is typically designed to
solve model equations and to store simulation data going step by step forward in time from initial time

 to end time .

M
curt curh

M
curt curh)(tu

startt stopt

With advanced error controlled master algorithms there are two fundamentally different types of

communication steps : cur
M
cur

M
cur htt +→

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 54 of 57

• Accepted communication steps: All slaves perform successfully the communication step and generate

simulation data that should be saved to file. At the error estimate and the error

indicator

cur
M
cur ht + EST

err are evaluated resulting in 1err ≤ . Then, the current communication point is

updated to and co-simulation proceeds with the next communication step and “optimal”

communication step size , input parameter newStep of fmiDoStep(…) is set to fmiTrue.

M
curt

cur
M
cur ht +

opthc

• Rejected (or “discarded”) communication steps: All slaves perform the communication step but do not
generate any simulation data for file output. If all slaves complete successfully the full communication

step then the error estimate and the error indicator ercur
M
cur

M
cur htt +→ EST r are evaluated but the

error indicator exceeds its critical value: . The communication step has to be repeated with the

same current communication point as before but reduced communication step size . The

communication step has to be repeated as well if at least one slave fails to complete the communication

step successfully. Again, the current communication point is left unchanged and the communication

step size is reduced appropriately.

1err >
M
curt optcur : hch =

M
curt

curh

A technically challenging problem in the design and implementation of error controlled master algorithms

is caused by the fact that during a communication step , i.e. during a call to

fmiDoStep(…), neither the master nor any slave know if the communication step will finally be accepted
or not since this decision is based on the output of all slaves. The output of simulation data to file,
updates of model parameters etc. have to be postponed until all slaves have completed the current call
of fmiDoStep(…) and the error criterion er

cur
M
cur

M
cur htt +→

r is evaluated. In a practical implementation, the file output

of simulation data during the communication step may be redirected to a data buffer. If the
communication step is accepted, the buffered data are written to file, otherwise the data buffer is
cleared.

In nested co-simulation environments with nested communication step size control, the situation gets
even more complicated since the output of simulation data has to be postponed until all nested master
algorithms accept the (nested) communication steps. In FMI for Co-Simulation, the information that the

previous communication step was accepted may be given to the slaves setting

parameter newStep to fmiTrue in the next call to fmiDoStep(…). I.e., if a slave is called by function

fmiDoStep(…) with input argument newStep set to fmiTrue, then the previous call of this slave by

function fmiDoStep(…) resulted in an accepted communication step and data buffers should be written

to file, model parameters should be updated (if applicable) etc. before starting the computation of the

current communication step. This implementation scheme is applicable as well at the end time

performing a call of fmiDoStep(…) with and and newStep = fmiTrue before

terminating the co-simulation.

cur
M
cur

M
cur htt +→

stopt

stop
M
cur tt = 0cur =h

The specific problem in nested co-simulation environments is the fact that an accepted communication
step of the inner co-simulation environment may belong to a (larger) rejected communication step of the
outer co-simulation environment. Currently, all practical experience with communication step size control

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 55 of 57

in co-simulation is restricted to master algorithms generating non-decreasing sequences . More

sophisticated algorithms for nested master algorithms are still under development.

M
curt

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 56 of 57

Glossary
This glossary is a subset of (MODELISAR Glossary, 2009) with some extensions specific to this
document.

Term Description
algorithm A formal recipe for solving a specific type of problem.
application
programming
interface (API)

A set of functions, procedures, methods or classes together with type
conventions/declarations (e.g., C-header files) that an operating system, library or
service provides to support requests made by computer programs.

communication points Time grid for data exchange between master and slaves in a co-simulation
environment (also known as “sampling points” or “synchronization points”).

communication step
size

Distance between two subsequent communication points (also known as “sampling
rate” or “macro step size”).

co-simulation Coupling (i.e., dynamic mutually exchange and utilization of intermediate results) of
several simulation programs including their numerical solvers in order to simulate a
system consisting of several subsystems.

co-simulation
interface

The set of interfaces within the MODELISAR framework to perform a co-simulation.

co-simulation
platform

Software, which obtains means for coupling several simulation programs for co-
simulation.

functional mock-up
environment (FMUE)

In the general scheme of a simulation program FMUE is the part, which is responsible
for all control activities and computations of the simulation, including data exchange
between coupled simulation programs. It does include neither a user interface nor a
logic for a user interaction.

functional mock-up
interface for co-
simulation

One of the MODELISAR functional mock-up interfaces.
It connects the master solver component with one or more slave solvers.

functional mock-up
interface for model
exchange

One of the MODELISAR functional mock-up interfaces. It consists of the model
description interface and the model execution interface.
It connects the external model component with the solver component.

functional mock-up
trust center (FMTC)

As defined in the MODELISAR framework, FMTC describes a closed system
providing model and simulation access to authenticated users and functional mock-up
authorities through dedicated cryptographic interfaces.

functional mock-up
unit (FMU)

A “model class” from which one or more “model instances” can be build for
simulation. A FMU is stored in one zip-file as defined in section 4 consisting basically
of one xml file (see section 3) that defines the model variables and a set of C-
functions (see section 2), in source or binary form, to execute the model equations or
the simulator slave. In case of tool exection, additionally, the original simulator is
required to perform the co-simulation (compare section 3.5.2).

gateway A link between two computer programs allowing them to share information and
bypass certain protocols on a host computer.

integration algorithm The numerical algorithm to solve differential equations.
integrator A software component, which implements an integration algorithm.
interface An abstraction of a software component that describes its behavior without dealing

with the internal implementation. Software components communicate with each other
via interfaces.

 Functional Mock-up Interface for Co-Simulation
 MODELISAR (ITEA 2 - 07006)
 September 30, 2010
 Page 57 of 57

master/slave A method of communication, where one device or process has unidirectional control
over one or more other devices. Once a master/slave relationship between devices or
processes is established, the direction of control is always from the master to the
slaves. In some systems a master is elected from a group of eligible devices, with the
other devices acting in the role of slaves.

model A model is a mathematical or logical representation of a system of entities,
phenomena, or processes. Basically a model is a simplified abstract view of the
complex reality.
It can be used to compute its expected behavior under specified conditions.

model description file The model description file is an XML-file, which supplies a description of all properties
of a model (e.g. input/output variables).

model description
interface

An interface description to write or retrieve information from the model description file.

model execution
interface [from model
interface working
group]

An interface description to access the equations of a dynamic system from an
external program.

numerical solver see solver
output points Tool internal time grid for saving output data to file (in some tools also known as

“communication points” – but this term is used in a different way in FMI for Co-
Simulation, see above).

output step size Distance between two subsequent output points.
parameter A quantity within a model, which remains constant during simulation, but may be

changed between simulations.
Examples are a mass, stiffness, etc.

slave see master/slave
simulation Compute the behavior of one or several models under specified conditions.

(see also co-simulation)
simulation model see model
simulation program Software to develop and/or solve simulation models. The software includes a solver,

may include a user interface and methods for post processing (see also: simulation
tool, simulation environment).
Examples of simulation programs are: Amesim, Dymola, Simpack, SimulationX,
Simulink.

simulation tool see simulation program
simulator A simulator can include one or more simulation programs, which solve a common

simulation task.
solver Software component, which includes algorithms to solve models, e.g. integration

algorithms and event handling methods.
user interface The part of the simulation program that gives the user control over the simulation and

allows watching results.

	Overview
	2. Co-Simulation
	2.1. Generic Co-Simulation Activity Flow
	2.1.1. Process Assumptions
	2.1.1.1. Design Phase
	Modeling Step
	Transformation Step
	Composition Step

	2.1.1.2. Deployment Phase
	2.1.1.3. Simulation Phase
	Instantiation Sub-phase
	Initialization Sub-phase
	Simulation Sub-phase
	Shutdown Sub-phase

	2.1.2. Distributed Infrastructure Assumptions
	2.1.2.1. Generic Architecture
	2.1.2.2. Assumptions
	FMU Availability Assumption
	Communication Assumption
	Simulator Assumption

	2.1.2.3. Instantiation Sequence

	2.2. Numerical Co-Simulation Computation Flow
	2.2.1. Master-Slave Structure
	2.2.2. Basic Co-Simulation Computation Flow
	2.2.2.1. Initialization Sub-phase
	2.2.2.2. Simulation Sub-phase
	2.2.2.3. Shutdown Sub-phase
	2.2.2.4. Summary of Transferred Information via FMI for Co-Simulation

	2.2.3. Master
	2.2.4. Slave
	2.2.5. Example of Master Algorithm

	3. The Application Programming Interface
	3.1. The Co-Simulation Interface
	3.1.1. Platform Dependent Definitions (fmiPlatformTypes.h)
	3.1.2. Status Returned by Functions
	3.1.3. Inquire Platform and Version Number of Header Files

	3.2. Creation and Destruction of Co-Simulation Slaves
	3.2.1. Transfer of input / output values and parameters
	3.2.2. Computation
	3.2.3. Retrieving of Status Information from the Slave

	3.3. State Machine of Calling Sequence from Master to Slave
	3.4. Pseudo Code Example
	3.5. The Co-Simulation Description Schema
	3.5.1. Description of a Model for Co-Simulation (fmiModelDescription)
	3.5.2. Definition of an Implementation
	3.5.2.1. Capability Flags
	3.5.2.2. Model description

	4. Model Distribution
	5. Literature

