

Unrestricted

Functional Mock-up Interface for

Co-Simulation

MODELICA Association Project FMI

Document version: 1.0.1

 July 2017

• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 2 of 54

Unrestricted

History

Version Date Remarks

1.0 2010-10-12 First version

1.0.1 2016-05-05 AJunghanns: worked changes from ticket #370 into document, first attempt

Second run with AJunghanns and AViel

1.0.1 2017-07-10 FMI Steering Committee releases version

License of this document

Copyright © 2017, MODELICA Association Project FMI

This document is provided “as is" without any warranty. It is licensed under the CC-BY-SA (Creative

Commons Attribution-Sharealike 3.0 Unported) license, i.e., the license used by Wikipedia. Human-readable

summary of the license text from http://creativecommons.org/licenses/by-sa/3.0/:

You are free:

 to Share — to copy, distribute and transmit the work, and

 to Remix — to adapt the work

Under the following conditions:

 Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work.)

 Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same, similar or a compatible license.

The legal license text and disclaimer is available at:

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Note:

 Article (3a) of this license requires that any Derivative Work must clearly label, demarcate or otherwise

identify that changes were made to the Original Work.

 The C-header and XML-schema files that accompany this document are available under the BSD

license (http://www.opensource.org/licenses/bsd-license.html) with the extension that modifications

must be also provided under the BSD license.

 If you have improvement suggestions, please send them to the FMI development group at

contact@fmi-standard.org.

 All contributors have signed the FMI Corporate Contributor License Agreement (CCLA).

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.opensource.org/licenses/bsd-license.html
mailto:contact@fmi-standard.org

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 3 of 54

Unrestricted

Abstract

This document defines the “Functional Mock-up Interface for Co-Simulation”. While the interface

specification “Functional Mock-up for Model Exchange” (see MODELISAR 2010 for details) gives

standardized access to simulation model equations, the basic intention of this document is to provide an

interface standard for coupling two or more simulation tools in a co-simulation environment. Co-

simulation is a simulation technique for coupled time-continuous and time-discrete systems that exploits

the modular structure of coupled problems in all stages of the simulation process (pre-processing, time

integration, post-processing).

The data exchange between subsystems is restricted to discrete communication points (sampling points,

synchronization points). In the time between two communication points, the subsystems are solved

independently from each other by their individual solver. Master algorithms control the data exchange

between subsystems and the synchronization of all slave simulation solvers (slaves).

There are two possible ways to provide slave subsystems for co-simulation: subsystems with their

specific solver, which can be simulated as stand-alone components (dll-files), or subsystems with their

simulation tool, in which they have been developed. Both approaches are covered by this standard.

FMI for Co-Simulation provides interfaces between master and slaves and supports rather simple master

algorithms as well as more sophisticated ones. A small set of easy to use C-functions was developed to

implement the interface. Note that the master algorithm itself is not part of the standard FMI for Co-

Simulation, but a very simple example is given and discussed in this document.

All information about the slaves, which is relevant for the communication in the co-simulation

environment is provided in a slave specific XML-file. In particular, this includes a set of capability flags to

characterize the ability of the slave to support advanced master algorithms, e.g. the usage of variable

communication step sizes, higher order signal extrapolation, or others.

Changes for 1.0.1 compared to 1.0

Most changes reflect how FMI version 2.0 has solved ambiguities present in FMI version 1.0.

What changed Where

Fixed headers, document source, logo, header, footer, etc.

Clarification of fmuLocation argument Sec. 3.2

Zero length arrays allowed in API Sec. 3.1.1

Clarify location of additional shared libraries Sec. 4.0

Clarify multiple valueReferences to the same variable
and: What happens when setting aliased inputs and aliased parameters

Sec. 3.2.1

Removed a reference to fmiGetModelTypesPlatform Sec. 4.0

Removed Appendix B Appendix B

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 4 of 54

Unrestricted

Contents

1. Overview .. 5

2. Co-Simulation .. 8

2.1. Generic Co-Simulation Activity Flow ... 8

2.1.1. Process Assumptions .. 8

2.1.2. Distributed Infrastructure Assumptions ... 13

2.2. Numerical Co-Simulation Computation Flow .. 16

2.2.1. Master-Slave Structure .. 17

2.2.2. Basic Co-Simulation Computation Flow .. 18

2.2.3. Master .. 19

2.2.4. Slave .. 20

2.2.5. Example of Master Algorithm .. 20

3. The Application Programming Interface .. 2122

3.1. The Co-Simulation Interface.. 2122

3.1.1. Platform Dependent Definitions (fmiPlatformTypes.h) ... 2122

3.1.2. Status Returned by Functions ... 2223

3.1.3. Inquire Platform and Version Number of Header Files ... 2223

3.2. Creation and Destruction of Co-Simulation Slaves ... 2324

3.2.1. Transfer of input / output values and parameters ... 2627

3.2.2. Computation .. 2829

3.2.3. Retrieving of Status Information from the Slave.. 2829

3.3. State Machine of Calling Sequence from Master to Slave .. 2930

3.4. Pseudo Code Example .. 3031

3.5. The Co-Simulation Description Schema ... 3233

3.5.1. Description of a Model for Co-Simulation (fmiModelDescription) 3233

3.5.2. Definition of an Implementation ... 3334

4. Model Distribution .. 3738

5. Literature .. 3940

Appendix A Contributors ... 4041

A.1 Version 1.0 .. 4041

Appendix B Features for Future Versions ... 4142

Appendix C Further Examples for Simulator Coupling .. 4243

C.1 Example 1: Parallel simulation and input/output of different kinds.. 4243

C.2 Example 2: Cycle (feedback) .. 4243

C.3 Pseudo Code for both examples ... 4344

Appendix D Higher Order Signal Extrapolation .. 4748

Appendix E Communication Step size Control ... 4950

Glossary ... 5354

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 5 of 54

Unrestricted

1. Overview

This document specifies a standardized Functional Mock-up Interface (FMI) for the coupling of two or

more simulation models in a co-simulation environment (FMI for Co-Simulation). Co-simulation is a

rather general approach to the simulation of coupled technical systems and coupled physical

phenomena in engineering with focus on instationary (time-dependent) problems. FMI for Co-Simulation

is designed both for the coupling of simulation tools (simulator coupling, tool coupling), and coupling with

subsystem models, which have been exported by their simulators together with its solvers as runnable

code.

Co-simulation exploits the modular structure of coupled problems in all stages of the s imulation process

beginning with the separate model setup and preprocessing for the individual subsystems in different

simulation tools. During time integration, the simulation is again performed independently for all

subsystems restricting the data exchange between subsystems to discrete communication points itc .

Finally, also the visualization and post-processing of simulation data is done individually for each

subsystem in its own native simulation tool. In different contexts, the communication points itc , the

communication steps 1 ii tctc and the communication step sizes iii tctchc  1: are also known as

sampling points (synchronization points), macro steps and sampling rates, respectively. The term

“communication point” in FMI for Co-Simulation refers to the communication between simulation tools

and should not be mixed with the output points for saving simulation results to file.

FMI for Co-Simulation is an interface standard for the solution of time dependent coupled systems

consisting of subsystems that are continuous in time (model components that are described by

instationary differential equations) or time-discrete (model components that are described by difference

equations like, e.g., discrete controllers). In a block representation of the coupled system, the

subsystems are represented by blocks with (internal) state variables)(tx that are connected to other

subsystems (blocks) of the coupled problem by subsystem inputs)(tu and subsystem outputs)(ty . In

this framework, the physical connections between subsystems are represented by mathematical coupling

conditions between the inputs)(tu and the outputs)(ty of all subsystems [R. Kübler, W. Schiehlen:

Two methods of simulator coupling. - Mathematical and Computer Modeling of Dynamical Systems

6(2000)93-113].

FMI for Co-Simulation addresses two basic aspects:

 the data exchange between subsystems and

 algorithmic issues to synchronize the simulation of all subsystems and to proceed in communication

steps (macro steps) 1 ii tctc from initial time startttc :0 to end time stopN ttc : .

For the first aspect, data exchange, the individual simulation tools have to be connected via MPI,

TCP/IP, sockets or alternative ways of communication. In each individual simulation tool, these

connections are initialized before the beginning of the time integration. In the co-simulation environment,

the mapping from all subsystem outputs)(ty to the subsystem inputs)(tu has to be initialized to

consider all physical coupling between the subsystems.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 6 of 54

Unrestricted

For the second aspect, a co-simulation specific software component is needed to organize the progress

from startttc 0 to stopN ttc  in communication steps 1 ii tctc and the data exchange between

subsystems at the communication points start i stopt tc t  (exchange of subsystem outputs)(itcy). This

software component is called master of the co-simulation environment. It may be implemented in one of

the individual simulation tools (master tool) or in a separate simulation backplane. In its most general

form, the coupled system may be simulated in nested co-simulation environments and FMI for Co-

Simulation applies to each level of the hierarchy.

FMI for Co-Simulation defines interface routines for the communication between a master and individual

simulation tools (slaves) in a co-simulation environment. A simulation tool or the part of it prepared for

co-simulation by implementing the FMI is called an FMU (Functional Mock-up Unit)1.

The most common master algorithm stops at each communication point itc the time integration of all

slaves, collects the outputs)(itcy from all subsystems, evaluates the subsystem inputs)(itcu ,

distributes these subsystem inputs to the slaves and continues the (co-)simulation with the next

communication step hctctctc iii  1 with fixed communication step size hc . In each slave, an

appropriate solver is used to integrate one of the subsystems for a given communication step 1 ii tctc .

The most simple co-simulation algorithms approximate the (unknown) subsystem inputs)(),(itcttu  by

frozen data)(itcu for
1i itc t tc   .

FMI for Co-Simulation supports this classical brute force approach as well as more sophisticated master

algorithms that adapt, e.g., the communication step size iii tctchc  1 to the solution behavior

(communication step size control), use higher order signal extrapolation to approximate the subsystem

inputs 1(), ()i iu t tc t tc   , or handle the subsystems in each communication step sequentially such that

intermediate results from the very first subsystems may be used to improve the approximation of

subsystem inputs)(tu in later stages of the communication step. FMI for Co-Simulation is designed to

support a very general class of master algorithms but it does not define the master algorithm itself.

Subsystem inputs and subsystem outputs are described in a slave specific XML-file that contains all

information about slave solver, slave model etc. being relevant for the co-simulation environment. The

ability of slaves to support more sophisticated master algorithms is characterized by a set of capability

flags that are added to the slave specific XML-file. Typical examples are the ability to handle variable

communication step sizes ihc and the ability to repeat a rejected communication step 1 ii tctc with

reduced communication step size.

The current document is structured as follows: After this general introduction and overview, Section 2

discusses the general phases of co-simulation workflow together with a more detailed description of all

components of a co-simulation environment. The interface itself is defined and discussed in Section 3.

Section 4 describes the structure of the archive called Functional Mock-up Unit (FMU), followed by a list

1 This definition differs slightly from the one used in the FMI for Model Exchange in that, in the case of tool coupling the or iginal

tool is additionally required to perform the co-simulation.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 7 of 54

Unrestricted

of references and the glossary. Additional issues like future extensions of FMI for Co-Simulation, further

examples of simulator coupling and some numerical issues are summarized in the Appendix.

Conventions used in this Document

Non-normative text is given in square brackets in italic font: [especially examples are defined in this

style.].

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 8 of 54

Unrestricted

2. Co-Simulation

This section gives an overview on co-simulation from a process perspective describing a sequence of

phases that are part of a co-simulation task. For the subsequent phases different aspects of FMI for Co-

Simulation have to be considered. Section 2 also describes different co-simulation scenarios, which are

called “code generation” and “tool coupling” in this document.

2.1. Generic Co-Simulation Activity Flow

2.1.1. Process Assumptions

The following sections are meant to indicate the possible process steps that may be taken by simulation

tools being part in a co-simulation setting. The overall process can be divided into a design phase, a

deployment phase, and a simulation phase.

Figure 1: Co-Simulation Process Phases

2.1.1.1. Design Phase

The design phase (Figure 2Figure 2) encompasses all the activities linked to the creation of a simulation

model, the packaging of the simulation model into an FMU component, and the composition of a

combined system model that makes use of several FMU components.

Figure 2: Design Phase Steps

Some vendors may only provide modeling and transformation capabilities for their simulation tools; the

simulation tool only provides an 'FMU export' feature, and is referred to as a slave simulator.

Other vendors may only provide composition capabilities for their simulation tools; such simulators are

pure co-simulation platforms, and generally provide an 'FMU import' feature. A simulator of this type is

referred to as master simulator.

A simulation tool can also provide both FMU export and FMU import features. As a result, an FMU can

be imported that includes itself a number of nested FMUs leading to a hierarchical composition of FMUs.

The following paragraphs describe each individual design step in more detail.

Modeling Step

The modeling step is the sole responsibility of the slave simulator. The user creates a simulation model

for a certain subsystem according to the specific requirements of the simulator.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 9 of 54

Unrestricted

Transformation Step

Once the simulation model is ready, the user needs to decide how the subsystem model will be exported

into an FMU implemented either with the FMI for Model Exchange API (see specification document for

details) or with the FMI for Co-Simulation API (Figure 3Figure 3). In this document only the second case

is discussed.

Figure 3: FMU Export Alternatives

The first decision is in terms of parameters; a list of model parameters is selected that will be made

public to the master. The result is the generation of the 'Model Description' XML file which describes

the model in terms of a black box.

The second decision pertains to the form in which the model will be exposed to the master. Two

alternatives are possible:

 Code Generation: The subsystem model is converted into code, i.e., the equations as well as the

solver are compiled into a shared library for one or more targets (similar to the FMI for Model

Exchange). Both model code and shared library can be included in the FMU archive (see section 4 for

details). The master uses the shared library during a simulation run. In the XML-file this is indicated

by the Implementation flag with the value CoSimulation_StandAlone.

 Tool Coupling: The subsystem model and dependencies are stored directly within the FMU. The

master needs to couple to the original slave simulator that exported the FMU to be able to perform a

simulation run. Instead of the compiled model code the FMU archive contains a shared library of a

slave tool specific wrapper, which is to be imported by the master tool and interfaces the external

tool. The XML Implementation flag has the value CoSimulation_Tool (for details see also 3.5.2).

The end-result is an FMU that contains a Model description XML file, and possibly the generated model

code, compiled shared libraries, or the actual model files. The FMU may be published to some FMU

library; two alternatives are possible:

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 10 of 54

Unrestricted

 The slave simulator published the FMU to a proprietary location within the simulator environment, or

 the FMI for PLM API is used to publish the FMU to a central PLM repository.

Composition Step

In general, co-simulation platforms require some form of composition of slave simulation models in order

to join subsystem models to a complete simulation system. This composition may be performed in

different manners, and typically results in some form of a component-connection graph structure (Figure

4Figure 4). In this specification, components denote imported FMU instances and the connections

represent the communication paths used to exchange data between FMUs. The master is then

responsible to schedule communication between components (master algorithm).

Figure 4: Component-Connection Graph Structure

A component-connection graph variant commonly used is the co-simulation with signal pools (Figure

5Figure 5). Typically a component publishes a specific output variable that is subscribed by several other

components as input. A co-simulation signal pool model can easily be converted to a connection graph

model.

Figure 5: Signal-Pool Variant of a Component-Connection Graph Structure

A master can import an FMU by reading the FMU’s zip-archive and the therein contained Model

Description XML file. The model description provides the information required by the master to expose

the name, the parameters, inputs and outputs of the FMU.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 11 of 54

Unrestricted

Figure 6: FMU Classifier/Instance Differences

To ensure reusability of an FMU within the same component-connection graph, a clear distinction is

made between classes and instances. Each specific FMU is a subsystem class with a unique identifier

(the name of an FMU is subsystem dependent). Because an FMU may appear several times within a

component-connection graph, an FMU is instantiated with each instance being assigned a unique

identifier. The FMU instance denotes then a component within the component-connection graph.

Additionally, each FMU instance stores the initial parameter values and the connection-graph can store

the simulation parameters.

2.1.1.2. Deployment Phase

If co-simulation is enacted within a single host, all FMU components need to be accessible to that host.

The master has direct file-access to the FMUs; in the simulation phase, the instantiation of FMUs can

occur directly within the master process.

In the context of distributed co-simulation, the master typically communicates with slave simulators

located on remote machines. The slave simulator is instructed to load the FMU in memory, and exposes

the loaded FMU as an instance to the master. To do so, the slave simulation requires access to the

FMU.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 12 of 54

Unrestricted

Figure 7: Distribution of FMUs across a Co-Simulation Cluster

Deployment refers to the act of making FMUs available to the slave simulators located remotely to the

master; deployment can be performed in different ways.

An offline deployment refers to the manual transport of FMUs to remote locations. Some co-simulation

platforms perform deployment within the composition phase. FMUs are copied remotely by the user.

An online deployment is the automatic deployment of FMUs on different hosts by the master. The user

only needs to specify on which hosts the various FMU instances need to be transferred to.

Either way, the end result is that the various FMUs used by the master are distributed on the intended

hosts.

2.1.1.3. Simulation Phase

The simulation phase (Figure 8Figure 8) encompasses all the activities related to the execution runtime.

The master is responsible for the lifecycle of FMU instances within a simulation run (experiment).

Figure 8: The Simulation Phase

The lifecycle of an FMU is comprised by the following sub-phases.

Instantiation Sub-phase

The master simulator is responsible for the instantiation of all FMU instances contained within the

component-connection graph. The FMUs are then loaded into memory and instantiated.

.fmu

Wrapper Tool 2

Network

Sub-
system
B

Simulation Tool

Solver

A2

BA1

Solver Tool A

Sub-
system A

.fmu

.fmu

Wrapper Tool 2

.fmu

Wrapper Tool 2

.fmu

Wrapper Tool 2Wrapper Tool 2Wrapper Tool 2

Network

Sub-
system
B

Simulation Tool

Solver

Sub-
system
B

Simulation ToolSimulation Tool

Solver

A2

BA1

A2A2

BA1A1

Solver Tool A

Sub-
system A

.fmu

Solver Tool A

Sub-
system A

Solver Tool A

Sub-
system A

.fmu

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 13 of 54

Unrestricted

Initialization Sub-phase

Once an FMU instance is ready, the master simulator can set the initial values for each FMU-instance

parameter as defined in the component-connection graph. All FMU instances are initialized before

simulation can start.

Simulation Sub-phase

The master simulator is responsible for the proper orchestration of the different FMU instances according

to a so-called master algorithm (see section 2.2).

Shutdown Sub-phase

The master simulator is responsible for the proper memory deallocation locally and remotely. All FMU

instances need to be shutdown; optionally, the FMUs themselves may be deleted from the operating

system.

2.1.2. Distributed Infrastructure Assumptions

This section relates to the general assumptions that are made in this document about the kind of co-

simulation architecture available on the market. The objective is to ensure that the FMI for co -simulation

API is generic enough to be adopted as wide as possible.

Focus is given to the distributed aspect of co-simulation which is of particular interest due the different

possibilities available on the market.

2.1.2.1. Generic Architecture

In the simplest compute / IT scenario, co-simulation is performed on one computer with shared memory

and a shared file system. The master simulation tool can import the shared library file from the FMU

(Figure 9Figure 9).

Figure 9: Co-simulation with generated code on a single computer

Figure 10Figure 10 shows, how a tool coupling scenario can be performed on a single computer. From a

user account the FMI co-simulators to be deployed are accessible without additional authentication.

Host 1

Simulation Tool 1: Master

User Interface

Sub-
system 1

Solver Tool 1

Solver Tool 2

Sub-
system 2

Host 1

Simulation Tool 1: Master

User Interface

Sub-
system 1

Solver Tool 1

Solver Tool 2

Sub-
system 2

Simulation Tool 1: Master

User Interface

Sub-
system 1

Solver Tool 1

User InterfaceUser Interface

Sub-
system 1

Solver Tool 1

Solver Tool 2

Sub-
system 2

Solver Tool 2

Sub-
system 2

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 14 of 54

Unrestricted

Figure 10: Co-simulation with tool coupling on a single computer

In a distributed co-simulation compute / IT scenario, the FMI co-simulators to be deployed are installed

on different computers with maybe different OS (cluster computer, compute farm, computers at different

locations) connected by LAN, WLAN, or WAN via TCP/IP. The user has authorized access (e.g., a user

account) to the computers with the FMI simulators to be deployed.

Figure 11: Distributed Co-simulation Infrastructure

In such scenario, in order to couple an FMI co-simulation slave on one computer to an FMI co-simulation

master on another computer, a so called FMI co-simulation backbone or framework has to be available

(see Figure 11Figure 11, communication layer tool). This backbone is a special middle-ware. It consists

of software on, both, co-simulation master and slave computer and performs the network communication

between master and slave. In effect, the FMI co-simulation master does not notice and differentiate the

location of the slave simulators.

The FMI co-simulation master (simulator) couples to the involved slave simulators through their FMI in

form of a zip-archive. Therefore, for every remote co-simulation slave an FMI zip-archive has to be

provided on the master's computer. This zip-archive, as well as the contained shared library file (DLL),

has to be compatible to the FMI backplane deployed for the connection with the respective slave

simulator. The co-simulation master reads and evaluates the XML description file in the FMI zip -archive.

The DLL contained in this zip-archive provides functions according to the FMI which are able to

Host 1

User Interface

Sub-
system 1

Simulation Tool 1: Master

Solver Tool 1

Sub-
system 2

User Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2

Host 1

User Interface

Sub-
system 1

Simulation Tool 1: Master

Solver Tool 1

User InterfaceUser Interface

Sub-
system 1

Simulation Tool 1: Master

Solver Tool 1

Sub-
system 2

User Interface

Simulation Tool 2

Solver Tool 2

Sub-
system 2

User InterfaceUser Interface

Simulation Tool 2

Solver Tool 2

Wrapper Tool 2Wrapper Tool 2Wrapper Tool 2

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 15 of 54

Unrestricted

communicate with the remote slave simulator via the FMI co-simulation backplane. The authentication on

the remote computer(s) is also performed by this backbone.

On the FMI co-simulation slave computer this backbone comprises an application server with an FMI

(master side) which can couple to an FMI slave. The server accesses the zip-archive of the FMI slave.

The application server loads/links the DLL to perform the communication between co -simulation master

and this slave.

2.1.2.2. Assumptions

FMU Availability Assumption

The general assumption is that an FMU is already available on the host where it will be started.

This assumption is fulfilled by an online/offline deployment.

Communication Assumption

No assumption is made as to which communication protocol or transport shall be used to access the

FMU instance across a network. The FMI-for-co-simulation shall not include details about host, tcp/udp

ports, etc.

FMI-for-co-simulation can only include local parameter specifications. The co-simulation framework

provides the remoting capabilities and is responsible to communicate with remote FMUs.

Simulator Assumption

The master simulator shall be given as little knowledge as possible about the slave simulator in a tool

coupling scenario. The objective is two fold:

 wrap all specific parameters required by a slave simulator in an implementation exposing the FMI -for-

co-simulation; this wrapper must be provided by the slave simulator tool vendor.

 wrap all specific parameters required by a co-simulation framework in an implementation exposing

the FMI-for-co-simulation; this wrapper will be loaded by the master simulator, and must be provided

by the co-simulation tool vendor.

2.1.2.3. Instantiation Sequence

The purpose of this section is to describe in more details the instantiation sequence required to remotely

load an FMU instance after calling the fmiInstantiateSlave.

In the following scenario, the co-simulation framework has already been provided with the component-

connection graph and the deployed location of FMU instances. The end result is to instantiate each FMU

instance locally or remotely.

 The master simulator loads the local FMU proxy, that is, the FMI wrapper (master adapter) provided

by the co-simulation framework.

 The co-simulation framework sends an instruction to the remote application server to load a specific

FMU instance.

 The remote application server selects the correct instantiation method. Two alternatives are possible:

 The FMU is composed of a shared library that includes model and solver in a compiled form. The

FMU shared library is directly loaded with the correct FMU instance identifier.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 16 of 54

Unrestricted

 The FMU represents a tool coupling. The MIME-type of the slave simulator is used to select the

correct FMI wrapper provided by the slave simulator tool vendor.

 The master simulator and slave simulator can now communicate over the FMI-for-co-simulation API.

2.2. Numerical Co-Simulation Computation Flow

Co-simulation is a simulation with more than one simulation tools which exchange intermediate results

(variables, values, information) during simulation.

A simulation tool (simulator) is a tool (algorithm, executable) that computes a model’s behavior, which

is called simulation. In the computational sense a simulation is an autonomously running process. FMI

for Co-Simulation is restricted to:

 All calculated values)(tv are time dependent functions within an a priori defined time interval

start stopt t t  .

 All calculations (simulations) are carried out time increasing in general. The actual time t is running

step by step from startt to stopt . A tool may have the property to be able to repeat the simulation of

parts of],[stopstart tt or the whole time interval],[stopstart tt .

 After simulation the interval],[stopstart tt is covered by subintervals],[1ii tt with Ni 0 , 1 ii tt ,

starttt 0 , stopN tt  . The subinterval length ih is called step size of the
thi step, iii tth  1 . This

step size is simulation tool internal.

A simulation tool can be coupled, if it has the following properties:

 The simulation tool can be given a time value itc , start i stopt tc t  .

 The simulation can be interrupted when itc is reached.

 During the interrupted simulation the simulation tool can both receive values)(itcu and send values

)(itcy .

 During the interrupted simulation the simulation tool can be given a new time value 1itc ,

1i i stoptc tc t  to simulate the time subinterval 1i itc t tc  

 The subinterval length ihc is called step size of the
thi communication step, iii tctchc  1 . In

general, the communication step size can be positive, zero, but not negative.

y = S(u)

y(tci)u(tci)

Figure 12: Data flow of a simulation tool at communication points

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 17 of 54

Unrestricted

The item simulation tool in the sense of this description can be a huge variety of tools: a powerful

simulator like AmeSim, Dymola, Simpack, SimulationX, … but also a C program, which reads data from

a file without having its own solver. Within a system to be simulated many different tools should be able

to interact.

2.2.1. Master-Slave Structure

Co-simulation is used to solve a coupled system by simulating each part with its own coupleable

simulation tool. Once the system is established there exists a directed signal flow between the involved

simulation tools. Therefore it is assumed that the signal flow between the coupled simulation tools is

directed. The coupled simulation tools form a directed graph G the nodes of which are the simulation

tools, and the directed lines describe the data flow.

Simulation tool A

Simulation tool B

Simulation tool E

Simulattion tool D

Simulation tool C

Simulation tool G

Simulation tool F

Figure 13: Example graph G of coupled simulation tools

Instead of directly coupling, a master is assumed to be located between the single simulation tools which

are now called slaves. Each arrow of the graph G is regarded as to go “through” the master.

master

simulator A

simulator A

simula

tor A

simul

ator A

si

mu

lat

or

A

slave A

slave B

slave E

slave D

slave C

slave G

slave F

Figure 14: Master-Slave structure

Slaves are assumed to communicate with the master only. In this description the interface between

master and slave is defined.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 18 of 54

Unrestricted

The master itself can be involved in a higher order simulation environment serving as slave. On each

level of such a nested master hierarchy the FMI for Co-Simulation can be applied.

2.2.2. Basic Co-Simulation Computation Flow

The slaves will have properties which influence the possible master algorithms, especially restrict them.

The master has to select suitable algorithms. In this description the master algorithms will be neither

defined nor standardized. Only the interface between master and slaves is to be defined. Nevertheless,

a basic co-simulation flow is assumed:

2.2.2.1. Initialization Sub-phase

All simulation tools are prepared for starting the co-simulation. The communication links between master

and slaves are established. The master receives the properties of the slaves. Additionally the master

receives the connection graph G e.g. by user input. The master chooses the master algorithm based on

the capabilities of the involved slaves as well as the connection graph G, and possibly user inputs.

2.2.2.2. Simulation Sub-phase

The master forces the slaves to simulate the time interval],[stopstart tt by stepwise solving master

subintervals (communication steps)],(1ii tctc with Ni 0 , 1 ii tctc , startttc 0 , stopN ttc  . The

subinterval length ihc is called communication step size of the
thi step, iii tctchc  1 .

The boundary points 1, ii tctc of each subinterval are called communication points. It is allowed that

the communication step size ihc can be zero (ii tctc 1 , iteration). In particular for the first simulation

step and at an event (event iteration) a communication step size of zero length is appropriate, 0ihc .

It depends on the master algorithm how the communication step size, and the communication points are

chosen. The master algorithm itself uses both the slave properties, and the graph G. The communication

points can be chosen by the master individually for each slave, and the master can start and stop each

slave independently from other slaves.

Before a subinterval is simulated, the slave receives its input values)(itcu and possibly derivatives with

respect to time ()(itcu ,)(itcu , …) as well as the communication step size ihc . After starting the slave

simulation of the communication step],[1ii tctc the master receives the slave output values)(1itcy

and possibly derivatives with respect to time ()(1itcy ,)(1itcy , …). Furthermore, the slave status has

to be transferred to the master. Especially if the slave simulation fails, further communication is

necessary.

2.2.2.3. Shutdown Sub-phase

By giving a closing information the master forces the slaves to stop.

2.2.2.4. Summary of Transferred Information via FMI for Co-Simulation

The interface between master and slave must be able to transfer the following information:

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 19 of 54

Unrestricted

To be transferred Direction When

Properties of the slave To master Initialization sub-phase

Status of the slave To master After communication step

Slave input values)(itcu and derivatives

(optional)

To slave Before communication step

Slave output values)(1itcy and derivatives

(optional)

To master After communication step and

after initialization

Control commands, at least

- simulate communication step],[1ii tctc

- finish simulation

To slave At communication step

Shutdown sub-phase

The connection graph G which specifies the directed connection between inputs and outputs of the

slaves is also needed by the master. The input of this graph G is not standardized in this document. The

graph input can be achieved e.g. by a user input.

All information regarding the (static) properties of slaves will be collected within XML-files. By reading

the XML files the master gets the properties of the slaves.

2.2.3. Master

The tasks of the master are:

Tasks to be done in the initialization sub-phase:

 Ask the properties of the slaves.

 Analyze the graph G.

 Chose a master algorithm.

In the simulation sub-phase the master provides subintervals for each slave.

Before the slave simulation of a communication step],[1ii tctc the master tasks are:

 Calculate the communication step size ihc , as well as the communication step],[1ii tctc .

 Calculate the slave input values)(itcu and possibly their derivatives)(itcu ,)(itcu , …

 Transfer itc , 1itc ,)(itcu and possibly)(itcu ,)(itcu , … to the slave.

 Start the slave to simulate the communication step],[1ii tctc .

 Wait for slave finishing.

After the slave simulation of the communication step],[1ii tctc the tasks are:

 Ask the status of the slave, interpret it.

 Transfer)(1itcy and possibly)(1itcy ,)(1itcy , … to the master, if the communication step is

calculated regularly, or after initialization. [adapt State Machine]

 Transfer additional information to the master, if the communication step is not calculated regularly,

e.g. error messages, or an intermediate stop time

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 20 of 54

Unrestricted

In the shutdown sub-phase after the complete simulation, or in special cases

 Stop the complete simulation.

2.2.4. Slave

The tasks of the slave are:

Tasks to be done in the initialization sub-phase:

 Send the properties of the slave to the master.

Before the simulation of a communication step],[1ii tctc the tasks are:

 Stop, if stop command is received (shutdown sub-phase).

 Receive itc , 1itc ,)(itcu and possibly derivatives)(itcu ,)(itcu , … from the master.

 Simulate the communication step],[1ii tctc after receiving the simulate-command.

 Transfer)(1itcy and possibly derivatives)(1itcy ,)(1itcy , … to the master, if the communication

step is calculated regularly.

 Transfer additional information to the master, if the subinterval is not calculated regularly, e.g. error

messages, or intermediate stop time.

After the simulation of a subinterval],[1ii tctc the tasks are:

 Wait for the next command.

This roughly described communication is detailed in section 3.

2.2.5. Example of Master Algorithm

One of the simplest master algorithms is like this:

 The communication step size is constant: ihchci  .

 For all slaves the first input value is chosen by the master, e.g. 0)(starttu .

 The input values)(itcu are transferred to all slaves as well as the communication step size hc . The

slave simulation is started, and the resulting output values)(1itcy are transferred to the master. This

is done for increasing i until stopt is reached.

 At each communication point itc the master distributes the received slave results)(itcy to the slave

inputs)(itcu according to the connection graph for the next communication step],[1ii tctc .

The simplest way to use the input values by the slaves is to keep u constant during the slave simulation:

)()(itcutu  for all 1 ii tcttc .

For this simple master algorithm case a pseudo code example is given in the next section.

More advanced master algorithms analyze the connection graph to elaborate an effective calling order

for the slaves. The communication step size can be adapted, and if possible communication steps can

be repeated to allow iterative master algorithms.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 21 of 54

Unrestricted

3. The Application Programming Interface

The interface consists of two parts:

 Co-Simulation Interface

A set of C-functions for exchange of in/output values and status information.

 Co-Simulation Description Schema

The schema defines the structure and content of an XML-file. This file contains the “static” information

concerning the model (dimensions, input/output variables…) and the simulator (capabilities, …) which

is used to compute the model.

3.1. The Co-Simulation Interface

This chapter contains the interface description to access the in/output data and status information of a

co-simulation slave from a C program.

3.1.1. Platform Dependent Definitions (fmiPlatformTypes.h)

In order to simplify porting, no C types are used in the function interfaces, but the alias types defined in

this section. All definitions in this section are provided in the header file “fmiPlatformTypes.h”1.

typedef void* fmiComponent;

 This is a pointer to a co-simulation slave specific data structure. It contains all information

needed by the slave to process the co-simulation.

typedef unsigned int fmiValueReference;

 This is a handle to a (base type) variable value of the model. The handle is unique at least

with respect to the corresponding base type (like fmiReal). All structured entities, like

records or arrays, are “flattened” in to a set of scalar values of type fmiReal, fmiInteger

etc. An fmiValueReference references one such scalar. The coding of

fmiValueReference is a “secret” of the modeling environment that generated the model.

The interface only provides access to variables via this handle. Extracting concrete

information about a variable is specific to the used environment that reads the Model

Variable File in which the value handles are defined.

If a function in the following sections is called with a wrong fmiValueReference value

(e.g. setting an output with an fmiSetReal(...) function call), then the function has to

return with an error (fmiStatus = fmiError), i.e., the processing of the co-simulation

must be terminated.

typedef double fmiReal ; // Real number (64 bits)

typedef int fmiInteger; // Integer number (32 bits)

typedef char fmiBoolean; // Boolean number (8 bit,

 // two values: fmiFalse, fmiTrue)

typedef const char* fmiString ; // Character string (′\0′ terminated)

 // UTF8 encoded

#define fmiTrue 1

1 This file is identical to fmiModelTypes.h from Model Exchange 1.0. In the follow up version Model -Exchange will also use this

file.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 22 of 54

Unrestricted

#define fmiFalse 0

 These are the basic data types used in the interfaces of the C-functions. More data types

might be included in future versions of the interface.

If an fmiString variable is passed as input argument to a function and the string shall be

used after the function has returned, the whole string must be copied (not only the pointer)

and stored in the internal memory, because there is no guarantee for the lifetime of the

string after the function has returned.

For arrays passed between environment and the FMU, zero-length arrays are allowed and then NULL is

allowed – not required – for the corresponding array pointer.

3.1.2. Status Returned by Functions

This section defines the “status” flag (an enumeration of type fmiStatus defined in file

“fmiModelFunctions.h”) that is returned by all functions to indicate the success of the function call.

typedef enum {fmiOK,

 fmiWarning,

 fmiDiscard,

 fmiError,

 fmiFatal,

 fmiPending

 } fmiStatus;

 Status returned by functions. The status has the following meaning

 fmiOK – all well

 fmiWarning – there are things not quite right, but the computation can continue.

Function “logger” was called in the model (see below) and it is expected that this

function has shown the prepared information message to the user.

 fmiDiscard – can be returned by fmiDoStep(...) or fmiGetSlaveStatus(...,

fmiDoStepState,...). See section 3.2.2. Is returned also if the slave is not able to

return the required status information. The master has to decide if the simulation run

can be continued anyway.

 fmiError – the slave encountered an error. If one of the functions (except

fmiDoStep(...)) returns fmiError, the simulation cannot be continued and

function fmiFreeInstance(...) must be called. Function “logger” was called (see

below) and it is expected that this function has shown the prepared information

message to the user.

 fmiFatal – the slave is irreparably corrupted. Function logger was called (see

below) and it is expected that this function has shown the prepared information

message to the user. It is not possible to call any other function of the slave.

 fmiPending – is returned if the slave executes the function in an asynchronous way.

That means the slave starts to compute but returns immediately. The master has to

call fmiGetStatus(..., fmiDoStepStatus) to find out, if the slave is ready. Can

be returned only by the function fmiDoStep(...) and by fmiGetStatus (see

section 3.2.

3.1.3. Inquire Platform and Version Number of Header Files

This section documents functions to inquire information about the header files used to compile its

functions.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 23 of 54

Unrestricted

const char* fmiGetTypesPlatform();

 Returns the name of the set of (compatible) platforms of the “fmiTypes.h” header file

which was used to compile the functions of the Model Exchange interface. The function

returns a pointer to the static variable “fmiTypesPlatform” defined in this header file. The

standard header file as documented in this specification has version “standard32” (so this

function usually returns “standard32”).

const char* fmiGetVersion();

 Returns the version of the implemented co-simulation interface functions. If a slave supports

the interface as it is described in this document it has to return “1.0”.

3.2. Creation and Destruction of Co-Simulation Slaves

This section documents functions that deal with instantiation and destruction of co-simulation slaves.

fmiComponent fmiInstantiateSlave(fmiString instanceName, fmiString fmuGUID,

 fmiString fmuLocation, fmiString mimeType,

 fmiReal timeout, fmiBoolean visible,

 fmiBoolean interactive,

 fmiCallbackFunctions functions,

 fmiBoolean loggingOn)

 Returns a new instance of a co-simulation slave. If a null pointer is returned, then

instantiation failed. In that case, function “functions->logger” was called and detailed

information is transferred given there. A slave can be instantiated many times. This function

must be called successfully, before any of the following functions can be called. The slave

has to perform all actions which are necessary before a simulation run starts (e.g. loading

the model file, compilation...).

Argument instanceName is a unique identifier for a given FMI Component instance.

This instance identifier is used to identify a component within a co-simulation graph model,

and can be used for logging messages. This argument cannot be null.

Argument fmuGUID is used to check that the co-simulation description file is

compatible with the model file used by the slave. It is a vendor specific globally unique

identifier of the co-simulation description file. It is stored in the description file as attribute

guide of fmiModelDescription (See section 3.5). The fmuGUID read from the co-simulation

description file and passed to fmiInstantiateSlave must be identical to the one stored

in the used model (e.g., it is a “fingerprint” of the relevant information stored in the

description file), otherwise the model and the description file are not consistent to each

other. This argument cannot be null.

Argument fmuLocation is an URI according to the ietf RFC3986 syntax to indicate

the access path to the root directory of the unpacked content of the FMU file. The following

protocols must be understood: (Mandatory) file:// (Optional) http(s):// ftp:// (Reserved) ‘fmi://’

for fmi for PLM.

Argument mimeType represents the MIME type (ietf RFC 2045, 2046, 2047, 2048,

2049) of the ‘simulator’, e.g., ‘application/x-<simulator name>’, ‘application/x-

fmu-openmodelica’. If the FMU contains a shared library, i.e., Model exchange + solver,

the following mime-type should be used: ‘application/x-fmu-sharedlibrary’. This

mimetype is typically used to help identify which simulator or FMI wrapper DLL is to be

started for the specified FMU in the tool coupling scenario.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 24 of 54

Unrestricted

Special mimetype could be ‘application/x-fmu-modelica’ to be used by any modelica

simulators. This argument cannot be null.

Argument timeout is a communication timeout value in milli-seconds to allow inter-

process communication to take place. A timeout value of 0 indicates an infinite wait period.

Argument visible indicates whether or not the simulator application window needed

to execute a model should be visible, i.e., fmiFalse value indicates that the simulator is

executed in batch mode, and fmiTrue value indicates that the simulator is executed in

interactive mode. Use case: in interactive mode, it should be possible to explicitly

acknowledge start of simulation / instantiation / initialization; acknowledgement is non-

blocking.

Argument interactive indicates whether the simulator application must be manually

started by the user, i.e., fmiFalse value indicates that the co-simulation tool automatically

starts the simulator application and executes the model referenced in the model description,

and fmiTrue value indicates that the simulator indicates that the simulator application

must be manually started by the user.

Argument functions provides callback functions to be used from the model functions

to utilize resources from the environment (see type fmiCallbackFunctions below).

If loggingOn=fmiTrue, debug logging is enabled. If loggingOn=fmiFalse, debug

logging is disabled.

typedef struct {

 void (*logger)(fmiComponent c, fmiString instanceName,

 fmiStatus status, fmiString category,

 fmiString message, ...);

 void (*stepFinished) (fmiComponent c, fmiStatus status);

 void* (*allocateMemory)(size_t nobj, size_t size);

 void (*freeMemory) (void* obj);

 } fmiCallbackFunctions;

 The struct contains pointers to functions provided by the environment to be used by the

slave. In the default fmiFunctions.h file, typdefs for the function definitions are present to

simplify the usage. This is non-normative. The functions have the following meaning:

Function logger:

Pointer to a function that is called in the model, usually if the model function does not

behave as desired. If “logger” is called with “status = fmiOK”, then the message is a

pure information message. “instanceName” is the instance name of the model that calls

this function. “category” is the category of the message. Usually, “category” is only used

for debug messages in order that the environment can filter the debug messages to be

shown. The meaning of “category” is defined by the modeling environment that generated

the model code. Argument “message” is provided in the same way and with the same

format control as in “printf(...)”. In the simplest case, this function might only print the

message. It might also just store the message in a stack of buffers and via options in the

environment the printing of the messages is controlled.

The logger function will append a line break to each message when writing messages after

each other to a terminal or file (the messages may also be shown in other ways, e.g. as

separate text-boxes in a GUI). The caller may include line-breaks (using "\n") within the

message, but should avoid trailing line breaks.

Variables are referenced in a message with “#<Type><ValueReference>#” where

<Type> is “r” for fmiReal, “i” for fmiInteger, “b” for fmiBoolean and “s” for fmiString.

If character “#”shall be included in the message, it has to be prefixed with “#”, so “#” is an

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 25 of 54

Unrestricted

escape character. Example:

A message of the form

“#r1365# must be larger than zero (used in IO channel ##4)”

might be changed by the environment to

“body.m must be larger than zero (used in IO channel #4)”

if “body.m” is the name of the fmiReal variable with fmiValueReference =

1365.

Function stepFinished:

Optional call back function to signal if the computation of a communication step is

finished. A NULL pointer can be provided. In this case fmiDoStep has to be carried

out synchronously. If a pointer to a function is provided, it must be called after a

completed communication step.

Function allocateMemory:

Pointer to a function that is called in the model if memory needs to be allocated. It is not

allowed that the model uses malloc, calloc or other memory allocation functions. One

reason is that these functions might not be available for embedded systems on the target

machine. Another reason is that the environment may have optimized or specialized

memory allocation functions. allocateMemory returns a pointer to space for a vector of

nobj objects, each of size “size” or NULL, if the request cannot be satisfied. The space is

initialized to zero bytes (a simple implementation is to use calloc from the C standard

library).

Function freeMemory:

Pointer to a function that must be called in the model if memory is freed that has been

allocated with allocateMemory. If a NULL pointer is provided as input argument obj,

the function shall perform no action (a simple implementation is to use free from the

C standard library; in ANSI C89 and C99, the null pointer handling is identical as

defined here).

The functions allocateMemory and freeMemory can be ignored by slaves. This is

signalled by setting the capability flag canNotUseMemoryManagementFunctions.

fmiStatus fmiInitializeSlave(fmiComponent c, fmiReal tStart,

 fmiBoolean StopTimeDefined, fmiReal tStop);

 Informs the slave that the simulation run starts now.

The arguments tStart and tStop can be used to check whether the model is valid within

the given boundaries or to allocate memory which is necessary for storing results. If the

master tries to compute past tStop the slave returns fmiError.

fmiStatus fmiTerminateSlave(fmiComponent c);

 Is called by the master to signal the slave the end of the co-simulation run.

fmiStatus fmiResetSlave(fmiComponent c);

 Is called by the master to reset the slave after a simulation run. Before starting a new run,

fmiInitializeSlave is to be called.

void fmiFreeSlaveInstance(fmiComponent c);

 Disposes the given instance, unloads the loaded model, and frees all the allocated memory

and other resources that have been allocated by the functions of the co-simulation

interface.

fmiStatus fmiSetDebugLogging(fmiComponent c, fmiBoolean loggingOn);

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 26 of 54

Unrestricted

 If loggingOn=fmiTrue, debug logging is enabled, otherwise it is switched off.

3.2.1. Transfer of input / output values and parameters

Input and output variables are identified with a variable handle called “value reference”. The handle is

defined in the co-simulation description file (as “ValueReference” in element “ScalarVariable”). It is a

unique reference within each Slave instance for a scalar variable with respect to its base type (like

fmiReal) and is internal information of the slave.

fmiStatus fmiSetReal (fmiComponent c, const fmiValueReference vr[],

 sizet nvr, const fmiReal value[]);

fmiStatus fmiSetInteger(fmiComponent c, const fmiValueReference vr[],

 sizet nvr, const fmiInteger value[]);

fmiStatus fmiSetBoolean(fmiComponent c, const fmiValueReference vr[],

 sizet nvr, const fmiBoolean value[]);

fmiStatus fmiSetString (fmiComponent c, const fmiValueReference vr[],

 sizet nvr, const fmiString value[]);

 Set values of inputs. Argument vr is a (possibly empty) vector of nvr value references that

define the variables that shall be set. Argument value is a vector with the actual values of

these variables. The slave has to copy the content of the value array if it needs them after

returning. The master may deallocate the array.

Restrictions and clarifications on using the fmiSetXXX functions (see also section 3.3):

1. These functions can only be called after calling fmiInstantiateSlave(…) and

before fmiFreeSlave(...).

2. Besides (1), they can always be called on inputs (ScalarVariable.Causality = “input”).

3. For parameters (ScalarVariable.causality = “input” and ScalarVariable.variability =

“parameter”) the functions can only be called between fmiInstantiateSlave(...)

and fmiInitializeSlave(...).
4. If a value reference appears multiple times in vr[] then the last value will be set. [This

way the results is the same as calling the function multiple times with the same value

reference.]

5. Setting aliased parameters and inputs variables: The last call to fmiSetXXX() will

define the value of the aliased variable(s).

If no set function is called for a variable it is initialized by the slave to its default value.

In order to enable the slave to interpolate the continuous real inputs between communication steps the

derivatives of the inputs with respect to time can be provided. To allow higher order interpolation also

higher derivatives can be set. Whether a slave is able to interpolate and therefore needs this information

is provided by the capability canInterpolateInputs.

fmiStatus fmiSetRealInputDerivatives(fmiComponent c,

 const fmiValueReference vr[],

 sizet nvr, const fmiInteger order[],

 const fmiReal value[]);

 Sets the n-th time derivative of real input variables. Argument “vr” is a (possibly empty)

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 27 of 54

Unrestricted

vector of value references that define the variables whose derivatives shall be set. The array

“order” contains the orders of the respective derivative (1 means the first derivative, 0 is not

allowed). Argument “value” is a vector with the values of the derivatives. “nvr” is the

dimension of the vectors.

Restrictions on using the function are the same as for the fmiSetReal function.

Inputs and their derivatives are set with respect to the beginning of a time step.

Output variables are handled in the same way using the following functions:

fmiStatus fmiGetReal(fmiComponent c, const fmiValueReference vr[],

 sizet nvr, fmiReal value[]);

fmiStatus fmiGetInteger(fmiComponent c, const fmiValueReference vr[],

 sizet nvr, fmiInteger value[]);

fmiStatus fmiGetBoolean(fmiComponent c, const fmiValueReference vr[],

 sizet nvr, fmiBoolean value[]);

fmiStatus fmiGetString(fmiComponent c, const fmiValueReference vr[],

 sizet nvr, fmiString value[]);

 Get actual values of variables by providing the variable handles.

To allow interpolation/approximation of the real output variables between communication steps (if they

are used as inputs for other slaves) the derivatives of the outputs with respect to time can be read.

Whether the slave is able to provide the derivatives of outputs is given by the unsigned integer capability

flag MaxOutputDerivativeOrder. It delivers the maximum order of the output derivative. If the actual

order is lower (because the order of integration algorithm is low), the retrieved value is 0.

Example: If the internal polynomial is of order 1 and the master inquires the second derivative of an

output, the slave will return zero.

The derivatives can be retrieved by:

fmiStatus fmiGetRealOutputDerivatives (fmiComponent c,

 const fmiValueReference vr[],

 sizet nvr, const fmiInteger order[],

 fmiReal value[]);

 Retrieves the n-th derivative of output values. Argument “vr” is a vector of “nvr” value

references that define the variables whose derivatives shall be retrieved. The array “order”

contains the order of the respective derivative (1 means the first derivative, 0 is not allowed).

Argument “value” is a vector with the actual values of the derivatives.

Restrictions on using the function are the same as for the fmiGetReal function.

The returned outputs correspond to the current slave time. E. g. after a successful fmiDoStep(...) the

returned values are related to the end of the time step.

This standard supports polynomial interpolation and extrapolation as well as more sophisticated signal

extrapolation schemes like rational extrapolation, see Appendix D.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 28 of 54

Unrestricted

3.2.2. Computation

The computation of time steps is controlled by the following function.

fmiStatus fmiDoStep(fmiComponent c, fmiReal currentCommunicationPoint,

 fmiReal communicationStepSize, fmiBoolean newStep);

 The computation of a time step is started.

The parameter currentCommunicationPoint is the current communication point of the master

(tci). Parameter communicationStepSize is the communication step size. If the master

carries out an event iteration the parameter communicationStepSize is zero. The

Parameter newStep is fmiTrue if the last communication step is accepted by the master

and a new communication step is started.

Depending on the internal state of the slave and the last call of fmiDoStep(...) the slave

has to decide which action is to be done before the step is computed.

The function returns:

 fmiOK - if the communication step was computed successfully until its end.

 fmiDiscard – if the slave computed successfully only a subinterval of the

communication step. The master can call the appropriate fmiGetXXXStatus functions

to get further information.

 fmiError – the communication step could not be carried out at all. The master can try

to repeat the step with other input values and/or an other communication step size.

 fmiPending – is returned if the slave executes the function in an asynchronous way.

That means the slave starts the computation but returns immediately. The master has

to call fmiGetStatus(...,fmiDoStep,...) to find out, if the slave is ready.

fmiCancelStep(...) can be called to cancel the current computation. It is not

allowed to call any other function during a pending fmiDoStep(…).

fmiStatus fmiCancelStep(fmiComponent c);

 Can be called if fmiDoStep returned fmiPending in order to stop the current asynchronous

execution. The master calls this function if e.g. the co-simulation run is stopped by the user

or one of the slaves. Afterwards it is only allowed to call the functions fmiTerminateSlave,

fmiResetSlave, or fmiFreeSlaveInstance.

It depends on the capabilities of the slave which parameter constellations and calling sequences are allowed

(see 3.5.1).

3.2.3. Retrieving of Status Information from the Slave

Status information is retrieved from the slave by the following functions:

fmiStatus fmiGetStatus(fmiComponent c, const fmiStatusKind s,

 fmiStatus* value);

fmiStatus fmiGetRealStatus(fmiComponent c, const fmiStatusKind s,

 fmiReal* value);

fmiStatus fmiGetIntegerStatus(fmiComponent c, const fmiStatusKind s,

 fmiInteger* value);

fmiStatus fmiGetBooleanStatus(fmiComponent c, const fmiStatusKind s,

 fmiBoolean* value);

fmiStatus fmiGetStringStatus(fmiComponent c, const fmiStatusKind s,

 fmiString* value);

 Informs the master about the actual status of the simulation run. Which status information is

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 29 of 54

Unrestricted

to be returned is specified by the argument fmiStatusKind. It depends on the capabilities

of the slave which status information can be given by the slave (see 3.5.1). If a status is

required which cannot be retrieved by the slave it returns fmiDiscard.

typedef enum {fmiDoStepStatus,

 fmiPendingStatus,

 fmiLastSuccessfulTime,

 } fmiStatusKind;

 Defines which status is inquired.

The following status information can be retrieved from a slave:

Status Type of retrieved

value

Description

fmiDoStepStatus fmiStatus Can be called when the fmiDoStep function returned

fmiPending. The function delivers fmiPending if the

computation is not finished. If the computation is

finished meanwhile the function returns the result of

the asynchronous executed fmiDoStep(...) call.

fmiPendingStatus fmiString Can be called when the fmiDoStep function returned

fmiPending. The function delivers a string which

informs about the status of the currently running

asynchronous fmiDoStep computation.

fmiLastSuccessfulTime fmiReal Returns the time until the last communication step was

computed successfully. Can be called after

fmiDoStep(...) returned fmiDiscard.

...

3.3. State Machine of Calling Sequence from Master to Slave

The following state machine demonstrates the possible calling sequence. The following abbreviations

are used:

 fmiFunc(...) is one of the functions fmiGetVersion(), fmiGetTypesPlatform(),

fmiSetDebugLogging(...)

 XXX is one of Real, Integer, Boolean, String

 ts, tm, h are internal variables of the slave

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 30 of 54

Unrestricted

Figure 15: State-machine for the calling sequence of co-simulation interface C-functions

3.4. Pseudo Code Example

In the following example, the usage of the FMI functions is sketched in order to clarify the typical calling

sequence of the functions in a simulation environment. The example is g iven in a mix of pseudo-code

and “C”, in order to keep it small and understandable. We consider two slaves. Both have one

continuous real input and one continuous real output which are connected in the following way:

Figure 16: Connection graph of the slaves

We assume no algebraic dependency between input and output of each slave. The slaves do not support

asynchronous execution of fmiDoStep(...). The code demonstrates the simplest master algorithm as

shown in section 2.2.5.

 Constant communication step size.

 No repeating of communication steps.

 The slaves do not support asynchronous execution of fmiDoStep.

The error handling is implemented in a very rudimentary way.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 31 of 54

Unrestricted

//////////////////////

//Initialization sub-phase

//Instantiate both slaves

fmiComponent s1 = fmiInstantiateSlave("Tool1", "", "Model1", "", ...);

fmiComponent s2 = fmiInstantiateSlave("Tool1", "", "Model2", "", ...);

// tStart needs to be between startTime and stopTime from the XML-file

tStart = 0;

// tStop needs to be between startTime and stopTime from the XML-file

tStop = 10;

// communication step size

h = 0.01;

//Initialize slaves

status = fmiInitializeSlave(s1, tStart, fmiTrue, tStop);

if(status == fmiOK)

 ret = fmiInitializeSlave(s2, tStart, fmiTrue, tStop);

//////////////////////

//Simulation sub-phase

//Current master time

tc = tStart;

while((tc < tStop) && (status == fmiOK))

 //retrieve outputs

 fmiGetReal(s1, ..., 1, &y1);

 fmiGetReal(s2, ..., 1, &y2);

 //set inputs

 fmiSetReal(s1, ..., 1, &y2);

 fmiSetReal(s2, ..., 1, &y1);

 //call slaves

 status = fmiDoStep(s1, tc, h, fmiTrue);

 if(status == fmiOK)

 status = fmiDoStep(s2, tc, h, fmiTrue);

 //increment master time

 tc+=communicationStepSize;

}

//////////////////////

//Shutdown sub-phase

if (status == fmiOK)

{

 fmiTerminateSlave(s1);

 fmiTerminateSlave(s1);

 //Reset slaves

 fmiResetSlave(s1);

 fmiResetSlave(s2);

}

if (status != fmiFatal)

{

 //cleanup slaves

 fmiFreeSlaveInstance(s1);

 fmiFreeSlaveInstance(s2);

}

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 32 of 54

Unrestricted

3.5. The Co-Simulation Description Schema

The FMI for co-simulation reuses the XML schema encoding conventions and data types as defined by

the FMI for model exchange (in section 3).

However, there are two important differences:

 The “fmiModelDescription.xsd” definition has been modified to include an Implementation element.

 An additional schema file “fmiImplementation.xsd” has been added to include the elements required

to support co-simulation description.

The following sections describe the amendments made to the fmiModelDescription schema and

detailed information related to the co-simulation implementation element (fmiImplementation).

3.5.1. Description of a Model for Co-Simulation (fmiModelDescription)

The FMI for Co-Simulation modifies the model description format of FMI for Model Exchange, by

appending an Implementation element; the reader is referred to section 3.1 of FMI for Model

Exchange specification to understand the details of the top level description.

The Implementation element is optional; if present, the import tool should understand the model

description as applying to co-simulation. As a consequence, the import tool must select the proper FMI

API. The “attributes” part of fmiModelDescription is not changed.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 33 of 54

Unrestricted

3.5.2. Definition of an Implementation

An ‘Implementation’ in the co-simulation context can be either CoSimulation_Tool or

CoSimulation_StandAlone.

The main difference between these implementations relates to the existence of the original model. A tool

execution requires that the original tool is available to be executed in co-simulation mode; in a stand-

alone execution, the slave is completely contained inside the FMU in source code or binary format

(shared library).

The Implementation element can have one of the element choices CoSimulation_StandAlone or

CoSimulation_Tool, which are described in the following table.

Name Description

CoSimulation_StandAlone This element is used when “FMI for Co-Simulation” code

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 34 of 54

Unrestricted

generators are used to transfer models into compilable source

code. The slave is available either in source code form or

binary format (shared library or executable).

CoSimulation_Tool This element is used when a slave simulation tool implements

the “FMI for Co-Simulation” API and models can be directly

executed without code generation being required.

The Element CoSimulation_StandAlone consists of a Capabilities element, the element

CoSimulation_Tool consists of a sequence of Capabilities and Model elements.

The elements Capabilities and Model are described in the following sections.

3.5.2.1. Capability Flags

The Capabilities element is based on the type definition fmiCoSimulationCapabilities, which is

defined as follows.

The Capabilities element can contain the following optional attributes.

Attribute Name Description

canHandleVariableCommunicationStepSize The slave can handle variable communication

step size. The communication step size

(parameter communicationStepSize of

fmiDoStep(...)) has not to be constant for

each call.

canHandleEvents The slave supports event handling during co-

simulation. The communication step size

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 35 of 54

Unrestricted

(parameter communicationStepSize of

fmiDoStep(...)) can be zero.

canRejectSteps This flag indicates the slave’s capability to

discard and repeat a communication step. The

parameter newStep of fmiDoStep(...) can

be fmiFalse. The parameter

currentCommunicationTime can be constant

in consecutive fmiDoStep(...) calls.

canInterpolateInputs The slave is able to interpolate continuous

inputs. Calling of

fmiSetRealInputDerivatives(...) has an

effect for the slave.

maxOutputDerivativeOrder The slave is able to provide derivatives of

outputs with maximum order. Calling of

fmiGetRealOutputDerivatives(...) is

allowed.

canRunAsynchronuously This flag describes the ability to carry out the

fmiDoStep(...) call asynchronously.

canBeInstantiatedOnlyOncePerProcess This flag indicates cases (especially for

embedded code), where only one instance per

FMU is possible

(multiple instantiation is default = false; if

multiple instances are needed, the FMUs must

be instantiated in different processes).

canNotUseMemoryManagementFunctions If true, the slave uses its own functions for

memory allocation and freeing only. The

callback functions allocateMemory and

freeMemory given in fmiInstantiateSlave

are ignored.

All flags are optional. The flags have the following default values.

 boolean: false

 unsignedInt: 0

3.5.2.2. Model description

The Element Model is based on the type definition fmiCoSimulationModel, which is defined as

follows.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 36 of 54

Unrestricted

Attribute Name Description

entryPoint The URI of the model to be executed by the slave simulator. Examples of

URIs are:

 “fmu://resources/model/controller.mdl” refers to a

model within the FMU archive.

 “file://c:/model/controller.mdl” refers to a model

located externally to the FMU archive.

 “http://myserver:6456/models/controller.mdl” refers to

a model accessible via a web server.

manualStart Indicates whether the model should be manually loaded and started by the

user on the slave simulator. By providing this flag, the master tool can

choose the adequate start sequence on the master side. By default, this

flag is set to false.

type A mime type that indicates the needed simulator and FMI wrapper for a

simulator that needs to be started to instantiate an FMI Component.

In some cases, several model files may be transported, e.g. calibration files. In a tool coupling scenario,

the master tool may need to know, which model needs to be opened to get the top level system.

Element Model contains an optional sequence of File elements. Each File element is used to

represent an additional file required by the slave simulator.

Attribute Name Description

file The URI of a file needed by the slave simulator to execute the native

model. An example of file URI entry is

“fmu://resources/model/myReferencedModel.mdl” that refers to a

model within the FMU archive.

file:///P:/model/controller.mdl

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 37 of 54

Unrestricted

4. Model Distribution

The major part of this section is directly taken from the specification document FMI for Model Exchange,

as FMI for Co-Simulation builds upon concepts of the previous. Additional remarks will point out, where

changes were made specifically for the co-simulation case.

An FMU description consists of several files. An FMU may be distributed in textual and/or in binary

format. All relevant files are stored in a zip-file with a pre-defined structure. The name of the zip-file must

be identical to the “modelIdentifier” stored as xml-attribute in the Model Description File and used as

defined symbol MODEL_IDENTIFIER with header file fmiFunctions.h. The extension of the zip-file

must be “.fmu”, e.g., “HybridVehicle.fmu”. The compression method used for the zip -file must be “deflate”

(most free tools, e.g. zlib, offer only the common compression method "deflate").

Every FMU is distributed by its own zip-file. This zip-file has the following structure:

// Structure of zip-file of an FMU

modelDescription.xml // Description of model (required file)

model.png // Optional image file of model icon

documentation // Optional directory containing the model documentation

 _main.html // Entry point of the documentation

 <other documentation files>

sources // Optional directory containing all C-sources

 // all needed C-sources and C-header files to compile and link the model

 // with exception of: fmiPlatformTypes.h and fmiFunctions.h

binaries // Optional directory containing the binaries

 win32 // Optional binaries for 32-bit Windows

 <modelIdentifier>.dll // DLL of the model interface implementation

 // and may contain shared objects (e.g. DLLs) <modelIdentifier>.dll depends on.

 // Optional object Libraries for a particular compiler.

 VisualStudio8 // Binaries for 32-bit Windows generated with

 // Microsoft Visual Studio 8 (2005)

 <modelIdentifier>.lib // Binary libraries

 gcc3.1 // Binaries for gcc 3.1

 ...

 win64 // Optional binaries for 64-bit Windows

 ...

 linux32 // Optional binaries for 32-bit Linux

 ...

 linux64 // Optional binaries for 64-bit Linux

 ...

resources // Optional resources needed by the model

 < data in model specific files which will be read during initialization >

The FMU must be distributed with at least one implementation, i.e., either sources or one of the binaries

for a particular machine1. It is also possible to provide the sources and binaries for different target

machines altogether in one zip-file. The names “win32”, “win64”, “linux32”, “linux64” are standardized, as

well as the names “VisualStudioX” and “gccX” that define the compiler with which the binary has been

generated. Further names can be introduced by vendors. Typical scenarios are to provide binaries only

for one machine type (e.g. on the machine where the target simulator is running and for which licenses

of run-time libraries are available) or to provide only sources (e.g. for translation and download for a

particular micro-processor). If run-time libraries cannot be shipped due to licensing, special handling is

needed, e.g., by providing the run-time libraries at appropriate places by the receiver.

1 Note that the implementation can be either according to FMI for Model Exchange or FMI for Co-Simulation. For the second, see

section 3.5.2 for details.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 38 of 54

Unrestricted

FMI for Co-Simulation provides the means for two kinds of implementation: CoSimulation_Tool and

CoSimulation_StandAlone. In the first scenario a slave tool specific wrapper dll has to be provided as

the binary, in the second a compiled or source code version of the model with its solver is stored (see

section 2.1 for details).

In directory “resources”, additional data can be provided in model specific formats, typically for tables

and maps used in the model. This data must be read into the model at the latest during initialization

(fmiInitializeSlave). The actual file names in the zip-file to access the data files can either be hard-

coded in the generated model functions, or the file names can be provided as string parameters via the

fmiSetString function (see Functional Mock-up Interface for Model Exchange MODELISAR (ITEA 2 - 07006)

January 26, 2010 Page 41 of 56).

In the case of a co-simulation implementation of CoSimulation_Tool type, the “resources“ directory can

contain the model source file in the tool specific file format.

Note that the header files fmiPlatformTypes.h and fmiFunctions.h are not included in the FMU

due to the following reasons:

fmiPlatformTypes.h makes no sense in the “sources” directory, because if sources are provided,

then the target simulator defines this header file and not the FMU. This header file is not included in the

“binaries” directory, because it is implicitly defined by the platform directory (e.g. win32 for 32 -bit

machine or linux64 for 64-bit machine). Furthermore, the version that was used to construct the FMU can

also be inquired via function fmiGetTypesPlatform().

fmiFunctions.h is not needed in the “sources” directory, because it is implicitly defined by attribute

fmiVersion in file modelDescription.xml. Furthermore, in order that the C-compiler can check for

consistent function arguments, the header file from the target simulator should be used when compiling

the C-sources. It would therefore be counter productive (unsafe), if this header file would be present.

This header file is not included in the “binaries” directory, since this header file was already utilized to

build the target simulator executable. Via attribute fmiVersion in file modelDescription.xml or via

function call fmiGetVersion() the version number of this header file used to construct the FMU can be

deduced.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 39 of 54

Unrestricted

5. Literature

AMESim: www.lmsintl.com/

AUTOSAR: www.autosar.org

Dymola: www.dynasim.se

EXITE: www.extessy.com

R. Kübler, W. Schiehlen: Two methods of simulator coupling. - Mathematical and Computer Modelling of

Dynamical Systems 6(2000)93-113.

MODELISAR Glossary (2009): MODELISAR WP2 Glossary and Abbreviations. Version 1.0, June 9, 2009.

MODELISAR 2010: Functional Mock-up Interface for Model Exchange, Version 1.0, January 26, 2010,

http://www.functional-mockup-interface.org/fmi.html

Silver: www.qtronic.de

Simpack: www.simpack.com

SimulationX: www.simulationx.com

XML: www.w3.org/XML, en.wikipedia.org/wiki/Xml

http://www.lmsintl.com/
http://www.autosar.org/
http://www.dynasim.se/
http://www.extessy.com/
http://www.functional-mockup-interface.org/fmi.html
http://www.simpack.com/
http://www.simulationx.com/
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Xml

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 40 of 54

Unrestricted

Appendix A Contributors

A.1 Version 1.0

The Functional Mock-up Interface subproject inside MODELISAR was initiated and organized by

Daimler AG. The development FMI for Co-Simulation version 1.0 was performed within WP200 of the

MODELISAR ITEA2 project, organized by the WP200 work package leader Dietmar Neumerkel

(Daimler). FMI for Co-Simulation was developed in three subgroups: “Solver Coupling” headed by Martin

Arnold (University Halle) and Torsten Blochwitz (ITI), “Tool Coupling” headed by Jörg-Volker Peetz

(Fraunhofer SCAI), and “Control Logic” headed by Manuel Monteiro (Atego) . The essential part of the

design of this version was performed by (alphabetical list):

Martin Arnold, University Halle, Germany

Constanze Bausch, Atego Systems GmbH, Wolfsburg, Germany

Torsten Blochwitz, ITI GmbH, Dresden, Germany

Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany

Manuel Monteiro, Atego Systems GmbH, Wolfsburg, Germany

Thomas Neidhold, ITI GmbH, Dresden, Germany

Jörg-Volker Peetz, Fraunhofer SCAI, St. Augustin, Germany

Susann Wolf, Fraunhofer IIS EAS, Dresden, Germany

This version was evaluated with prototypes implemented for (alphabetical list):

SimulationX by Torsten Blochwitz and Thomas Neidhold (ITI GmbH),

Master algorithms by Christoph Clauß (Fraunhofer IIS EAS)

The following MODELISAR partners participated at FMI design meetings and contributed to the

discussion (alphabetical list):

Martin Arnold, University Halle, Germany

Jens Bastian, Fraunhofer IIS EAS, Dresden, Germany

Constanze Bausch, Atego Systems GmbH, Wolfsburg, Germany

Torsten Blochwitz, ITI GmbH, Dresden, Germany

Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany

Manuel Monteiro, Atego Systems GmbH, Wolfsburg, Germany

Thomas Neidhold, ITI GmbH, Dresden, Germany

Dietmar Neumerkel, Daimler AG, Böblingen, Germany

Martin Otter, DLR, Oberpfaffenhofen, Germany

Jörg-Volker Peetz, Fraunhofer SCAI, St. Augustin, Germany

Tom Schierz, University Halle, Germany

Klaus Wolf, Fraunhofer SCAI, St. Augustin, Germany

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 41 of 54

Unrestricted

Appendix B Features for Future Versions

This appending has been removed. Future releases are now available.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 42 of 54

Unrestricted

Appendix C Further Examples for Simulator Coupling

In the following, two further examples demonstrating the coupling of three simulators are given in a mix

of pseudo-code and “C”.

C.1 Example 1: Parallel simulation and input/output of different kinds

The three slaves are connected in the following way:

Figure 17: Connection graph of the slaves of example 1

Simulator s[0] has one continuous real output yr[0], simulator s[1] has one continuous real output yr[0]

and one integer output yi[0], and simulator s[2] has two real inputs ur[0] , ur[1] and one integer input ui[0].

Simulators s[0] and s[1] have the same priority and there does not exist a cycle, so that both simulators

can work in parallel.

C.2 Example 2: Cycle (feedback)

The three slaves are connected in the following way:

s[0]

s[1]

s[2]

yr[0]

yi[0]

ur[0]

ui[0]

ur[1] yr[0]

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 43 of 54

Unrestricted

Figure 18: Connection graph of the slaves of example 2

Simulator s[0] has one continuous real input ur[0] and one continuous real output yr [0], simulator s[1]

has one continuous real input ur[0] and two continuous real outputs yr[0] and yr[1], and simulator s[2]

has one real inputs ur[0]. Simulators s[0] and s[1] have the same priority but this time a cycle exists, so

that both simulators cannot work in parallel.

C.3 Pseudo Code for both examples

The code demonstrates a more elaborate master algorithm than shown in section 2.2.5.

 Constant communication step size.

 Repeating of communication steps / iteration.

 Parallelization / multiple threads

The error handling is again implemented in a very rudimentary way.

////////////////////////

// Initialization sub-phase

// Graph structure (taken from configuration file)

// Number of slaves

nsim = 3;

// Priority of slaves 0...nsim-1

priority[0] = 0;

priority[1] = 0;

priority[2] = 1;

// At priority i do cycles exist? yes: cycles[i] = 1, no: cycles [i] = 0

cycles[1] = 0;

#ifdef Example1

cycles[0] = 0;

#else

cycles[0] = 1;

#endif

// Read the ModelDescription XML files of the FMUs

// Instantiate slaves

s[0]

s[1] s[2]

yr[0]

yr[0]

ur[0]

ur[0]

ur[0] yr[1]

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 44 of 54

Unrestricted

for (i = 0; i < nsim; ++i) {

 s[i]->component = fmiInstantiateSlave("Instance_i", "", "FMU_i.dll",

 "",...);

 if (s[i]->component == NULL)

 // error

}

// tStart needs to be between startTime and stopTime from the XML-file

tStart = 0;

// tStop needs to be between startTime and stopTime from the XML-file

tStop = 10;

// Communication step size

h = 0.01;

// Number of inputs and outputs of slave s[i] (taken from XML-file),

// n[u|y][r|i|b|s] is the number of components of [real|integer|boolean|string]

// [input|output] array [u|y][r|i|b|s]

#ifdef Example1

s[0]->nyr = 1;

s[1]->nyr = 1;

s[1]->nyi = 1;

s[2]->nur = 2;

s[2]->nui = 1;

#else

s[0]->nur = 1;

s[0]->nyr = 1;

s[1]->nur = 1;

s[1]->nyr = 2;

s[2]->nur = 1;

#endif

// Initialize slaves

for (i = 0; i < nsim; ++i) {

 status = fmiInitializeSlave(s[i]->component, tStart, fmiTrue, tStop);

 if (status != fmiOK)

 // error

}

////////////////////

// Simulation sub-phase

// Current master time

tc = tStart;

while ((tc < tStop) && (status == fmiOK)) {

 // Zero communication step size at first step and for event iteration

 if (firstStep || event)

 hStep = 0;

 else

 hStep = communicationStepSize;

 // Call slaves regarding priority

 for (prior = 0; prior < maxPriority; ++prior) {

 if (cycles[prior] == 0) { // no cycle, parallel execution of slaves

 // Call slaves of priority prior

 for (i = 0; i < nsim; ++i)

 if (priority[i] == prior) {

 // Open thread

 // Set inputs for slaves of priority prior

 fmiSetReal(s[i]->component, ..., s[i]->nur,

 s[i]->ur);

 fmiSetInteger(s[i]->component, ..., s[i]->nui,

 s[i]->ui);

 status = fmiDoStep(s[i]->component, tc, hStep,

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 45 of 54

Unrestricted

 fmiTrue);

 if (status == fmiError || status == fmiFatal)

 // error

 // Retrieve outputs for slaves of priority prior

 fmiGetReal(s[i]->component, ..., s[i]->nyr,

 s[i]->yr);

 fmiGetInteger(s[i]->component, ..., s[i]->nyi,

 s[i]->yi);

 // Close thread

 }

 } else { // cycle, serial execution of slaves, iteration

 itSteps = 0;

 newStep = fmiTrue;

 // Iteration

 do {

 ++itSteps;

 // Backup of values exchanged between slaves for error

 // check

 oldValues = values;

 // Call slaves of priority prior

 for (i = 0; i < nsim; ++i)

 if (priority[i] == prior) {

 // Set inputs for slaves of priority prior

 fmiSetReal(s[i]->component, ..., s[i]->nur,

 s[i]->ur);

 fmiSetInteger(s[i]->component, ...,

 s[i]->nui, s[i]->ui);

 status = fmiDoStep(s[i]->component, tc,

 hStep, newStep);

 if (status==fmiError || status==fmiFatal)

 // error

 // Get outputs for slaves of priority prior

 fmiGetReal(s[i]->component, ..., s[i]->nyr,

 s[i]->yr);

 fmiGetInteger(s[i]->component, ...,

 s[i]->nyi, s[i]->yi);

 }

 newStep = fmiFalse;

 // Check error between old and new values of iteration

 err = errorCheck(values, oldValues);

 } while (err > 0 && itSteps < maxItSteps);

 }

 }

 //increment current master time

 tc += hStep;

}

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 46 of 54

Unrestricted

//////////////////////

// Shutdown sub-phase

if (status == fmiOK) {

 // Terminate slaves

 for (i = 0; i < nsim; ++i)

 fmiTerminateSlave(s[i]->component);

 // Reset slaves

 for (i = 0; i < nsim; ++i)

 fmiResetSlave(s[i]->component);

}

if (status != fmiFatal)

 // Cleanup slaves

 for (i = 0; i < nsim; ++i)

 fmiFreeSlaveInstance(s[i]->component);

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 47 of 54

Unrestricted

Appendix D Higher Order Signal Extrapolation

Within each communication step 1 ii tctc the slave inputs)(tu are approximated using function

values at itct  and possibly up to 1r more previous communication points

riii tcttcttct   121 ..., , , for some 1r . In a serial implementation, it is even possible that some

slaves may use function values)(tu at the new communication point 1 itct .

In most co-simulation algorithms, polynomial approximations of slave inputs are used:

 Constant (“zero order”) extrapolation based on data at itct  :

)(:)()(0,E itcututu  , (1 ii tcttc) ,

 Linear (“first order”) extrapolation based on data at 1 itct and itct  :

))(()(:)()(1,E iii tcttcutcututu   with

1

1)()(
:)(










ii

ii
i

tctc

tcutcu
tcu , (1 ii tcttc) ,

 Linear (“first order”) interpolation based on data at itct  and 1 itct :

))(()(:)()(1,I iii tcttcutcututu   with

ii

ii
i

tctc

tcutcu
tcu










1

1)()(
:)( , (1 ii tcttc) ,

 Quadratic (“second order”) extrapolation based on data at 2 itct , 1 itct and itct  :

  22,E)(
2

1
))(()(:)()(iiiii tcttcutcttcutcututu   , (1 ii tcttc) with

 






 



















 









2

)()()()(
:)(2

21

21

1

1 ii

ii

ii

ii

ii
i

tctc

tctc

tcutcu

tctc

tcutcu
tcu and

))((
2

1)()(
:)(1

1

1




 



 iii

ii

ii
i tctctcu

tctc

tcutcu
tcu  ,

 Quadratic (“second order”) interpolation based on data at 1 itct , itct  and 1 itct :

  22,I)(
2

1
))(()(:)()(iiiii tcttcutcttcutcututu   , (1 ii tcttc) with

 






 



















 









2

)()()()(
:)(11

1

1

1

1 ii

ii

ii

ii

ii
i

tctc

tctc

tcutcu

tctc

tcutcu
tcu and

))((
2

1)()(
:)(1

1

1
iii

ii

ii
i tctctcu

tctc

tcutcu
tcu 




 



 

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 48 of 54

Unrestricted

and so on. In all these examples, a Nordsieck like representation of the interpolating and extrapolating

polynomials was used that expresses the approximation of)(tu in terms of powers of)(itct  with

coefficients being defined by difference quotients of u . Note, that the denominators of these difference

quotients may be further simplified in the case of equidistant communication points

... , , , , 112  iiii tctctctc with fixed communication step size hc :

... ,
22

 , 211
2111 hc

tctctctc
hctctctctctctc iiii

iiiiii 





 
 .

The Nordsieck like representation of the slave inputs is favourable since it abstracts from algorithmic

details (like data interpolation vs. data extrapolation) and requires at a communication point
itct  just

the transfer of the derivative vector








)(),...,(),(),(ik

k

iii tc
dt

ud
tcutcutcu  from master to slave to define

the extrapolated or interpolated slave inputs)(tu in communication step
1 ii tctc . For polynomial

slave inputs)(tu , the length 1k of this derivative vector determines the degree k of the polynomial

and the components of the derivative vector contain in increasing order the coefficients of !)(jtct j

i

for kj ,...,1,0 :





k

j

j

iij

j

tcttc
dt

ud

j
tu

0

)()(
!

1
)(.

The Nordsieck representation of polynomials is not restricted to classical interpolation polynomials but

may be used as well for more sophisticated co-simulation techniques like the extrapolated interpolation

(S. Dronka, J. Rauh: Co-Simulation-Interface for User-Force-Elements. – SIMPACK User Meeting 2006,

http://www.simpack.com/uploads/media/um06_dc_research-dronka_05.pdf) or interpolated extrapolation

of slave inputs. Also the extension to interpolation by rational functions and related approaches is

straightforward.

Practical experience and recent theoretical investigations (M. Arnold: Stability of sequential modular time

integration methods for coupled multibody system models. - Journal of Computational and Nonlinear

Dynamics, 5(2010)031003, doi:10.1115/1.4001389) show that higher order signal extrapolation

increases the risk of numerical instability in co-simulation. Therefore, polynomial signal extrapolation is

typically restricted to constant, linear or quadratic polynomials. In principle, however, interpolation

polynomials of arbitrary degree could be computed and evaluated very efficiently using their Newton

representation that may be found in any textbook on numerical mathematics. The coefficients

...),(),(ii tcutcu  of the Nordsieck representation are obtained by Taylor expansion of the interpolation

polynomial at
itct  .

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 49 of 54

Unrestricted

Appendix E Communication Step size Control

In contrast to classical (mono-disciplinary) simulation techniques in system dynamics, state-of-the-art

master algorithms in co-simulation are even today based on constant communication step sizes hc and

do not provide any automatic error control. Constant communication step sizes may restrict strongly the

efficiency of co-simulation algorithms if the solution behavior changes considerably during time

integration. Furthermore, the selection of an “optimal” constant communica tion step size hc requires

much practical experience or time-consuming numerical tests.

Therefore, error control and the adaptive selection of (variable) communication step sizes
ihc may

contribute to more reliable and more efficient master algorithms. The basic ideas of classical step size

control in time integration are described in great detail in the literature on numerical solution of ordinary

differential equations (U. Ascher, L.R. Petzold: Computer Methods for Ordinary Differential Equations

and Differential-Algebraic Equations. - SIAM Philadelphia, 1998). The practical implementation in the

explicit Runge-Kutta code DOPRI5 (http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f) may be

considered as an advanced reference implementation in classical ODE time integration.

Step size control is based on the component based comparison of an error estimate EST with user

defined bounds ATOL , RTOL in each time step:

 



















m

j jjj

j

ym 1

2

 RTOLATOL

EST

1
 :err .

The error indicator err shows if the (estimated) error EST is below the given error bounds ATOL ,

RTOL (resulting in 1err ). If 1err  , then the (estimated) error is too large and the current step

should be repeated with smaller step size.

The crucial part of this error control strategy is the efficient evaluation of a reliable error estimate EST

that may be obtained comparing two numerical solutions of different accuracy. In ODE and DAE time

integration, the nominal numerical solution in a time step hTT  is compared

 with the predictor of a linear multistep method in predictor-corrector form,

 with an embedded Runge-Kutta solution of different order in the case of Runge-Kutta methods or

 with the result of two time steps of reduced step size (2/hTT  and hThT  2/ ,

Richardson extrapolation).

The details of an efficient implementation are sophisticated, see the above given references. The use of

Richardson extrapolation for communication step size control in co-simulation is discussed in (R. Kübler:

Modulare Modellierung und Simulation mechatronischer Systeme . Fortschritt-Berichte VDI Reihe 20, Nr.

327. VDI-Verlag Düsseldorf, 2000).

In the context of co-simulation, vector EST should estimate in each communication step
1 ii tctc all

errors in the slave outputs)(1itcy that result from the use of approximated slave inputs

http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 50 of 54

Unrestricted

)(),(1 ii tcttctu . Then, the error indicator err shows if the communication step size
ihc was

sufficiently small to meet some user defined error bounds ATOL , RTOL or not. Furthermore, the ratio

between the error indicator err and its optimal value 1.0 may be used to define a posteriori an “optimal”

communication step size opthc :

1

1

opt

1
 :













k

i
err

hchc 

with a safety factor]9.0,8.0[ and k denoting the approximation order of the signal extrapolation for

slave inputs)(tu . Note, that opthc is always smaller than the current communication step size
ihc if the

error estimate EST exceeds the given tolerances (1err ).

If all slaves in a co-simulation environment support variable communication step sizes
ihc (capability

flag canHandleVariableCommunicationStepSize), then the master algorithm may use this optimal

communication step size opthc for the next communication step
1121 :   iiii hctctctc with

opt1 : hchci  . (At least) a warning message should be generated whenever the error indicator err

exceeds its critical value 1.0.

In a really error controlled master algorithm, however, a communication step resulting in an error

indicator 1err  has to be repeated with smaller communication step size (“rejected” communication

steps). FMI for Co-Simulation supports such step rejections by repeated calls of fmiDoStep(…) with one

and the same input parameter currentCommunicationPoint and different input parameters

communicationStepSize. To keep the discussion in this appendix compact the parameters

currentCommunicationPoint and communicationStepSize are abbreviated by
M

curt and curh ,

respectively. I.e., fmiDoStep(…) is called to perform one communication step cur

M

cur

M

cur htt  .

In a practical implementation of advanced error controlled master algorithms, all slaves of the co-

simulation environment have to support repeated calls with one and the same current communication

time
M

curt and different communication step sizes
curh (capability flag canRejectSteps). It is mandatory

for a successful co-simulation with communication step size control that all slaves in the co-simulation

environment guarantee that repeated calls of fmiDoStep(…) with identical input data (i.e. with identical

M

curt and
curh and identical slave inputs)(tu) result in exactly identical output data. Therefore, the

capability to discard and to repeat communication steps (capability flag canRejectSteps) requires

substantial modifications and extensions of existing simulation software that is typically designed to

solve model equations and to store simulation data going step by step forward in time from initial time

startt to end time stopt .

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 51 of 54

Unrestricted

With advanced error controlled master algorithms there are two fundamentally different types of

communication steps cur

M

cur

M

cur htt  :

 Accepted communication steps: All slaves perform successfully the communication step and generate

simulation data that should be saved to file. At cur

M

cur ht  the error estimate EST and the error

indicator err are evaluated resulting in 1err  . Then, the current communication point
M

curt is

updated to cur

M

cur ht  and co-simulation proceeds with the next communication step and “optimal”

communication step size opthc , input parameter newStep of fmiDoStep(…) is set to fmiTrue.

 Rejected (or “discarded”) communication steps: All slaves perform the communication step but do not

generate any simulation data for file output. If all slaves complete successfully the full communication

step cur

M

cur

M

cur htt  then the error estimate EST and the error indicator err are evaluated but the error

indicator exceeds its critical value: 1err  . The communication step has to be repeated with the same

current communication point
M

curt as before but reduced communication step size optcur : hch 
 . The

communication step has to be repeated as well if at least one slave fails to complete the communication

step successfully. Again, the current communication point
M

curt is left unchanged and the communication

step size curh is reduced appropriately.

A technically challenging problem in the design and implementation of error controlled master algorithms

is caused by the fact that during a communication step cur

M

cur

M

cur htt  , i.e. during a call to

fmiDoStep(…), neither the master nor any slave know if the communication step will finally be accepted

or not since this decision is based on the output of all slaves. The output of simulation data to file,

updates of model parameters etc. have to be postponed until all slaves have completed the current call

of fmiDoStep(…) and the error criterion err is evaluated. In a practical implementation, the file output of

simulation data during the communication step may be redirected to a data buffer. If the communication

step is accepted, the buffered data are written to file, otherwise the data buffer is cl eared.

In nested co-simulation environments with nested communication step size control, the situation gets

even more complicated since the output of simulation data has to be postponed until all nested master

algorithms accept the (nested) communication steps. In FMI for Co-Simulation, the information that the

previous communication step cur

M

cur

M

cur htt  was accepted may be given to the slaves setting

parameter newStep to fmiTrue in the next call to fmiDoStep(…). I.e., if a slave is called by function

fmiDoStep(…) with input argument newStep set to fmiTrue, then the previous call of this slave by

function fmiDoStep(…) resulted in an accepted communication step and data buffers should be written

to file, model parameters should be updated (if applicable) etc. before starting the computation of the

current communication step. This implementation scheme is applicable as well at the end time stopt

performing a call of fmiDoStep(…) with stop

M

cur tt  and 0cur h and newStep = fmiTrue before

terminating the co-simulation.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 52 of 54

Unrestricted

The specific problem in nested co-simulation environments is the fact that an accepted communication

step of the inner co-simulation environment may belong to a (larger) rejected communication step of the

outer co-simulation environment. Currently, all practical experience with communication step size control

in co-simulation is restricted to master algorithms generating non-decreasing sequences
M

curt . More

sophisticated algorithms for nested master algorithms are still under development.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 53 of 54

Unrestricted

Glossary

This glossary is a subset of (MODELISAR Glossary, 2009) with some extensions specific to this

document.

Term Description

algorithm A formal recipe for solving a specific type of problem.

application

programming

interface (API)

A set of functions, procedures, methods or classes together with type

conventions/declarations (e.g., C-header files) that an operating system, library or

service provides to support requests made by computer programs.

communication points Time grid for data exchange between master and slaves in a co-simulation

environment (also known as “sampling points” or “synchronization points”).

communication step

size

Distance between two subsequent communication points (also known as “sampling

rate” or “macro step size”).

co-simulation Coupling (i.e., dynamic mutually exchange and utilization of intermediate results) of

several simulation programs including their numerical solvers in order to simulate a

system consisting of several subsystems.

co-simulation

interface

The set of interfaces within the MODELISAR framework to perform a co-simulation.

co-simulation

platform

Software, which obtains means for coupling several simulation programs for co-

simulation.

functional mock-up

environment (FMUE)

In the general scheme of a simulation program FMUE is the part, which is responsible

for all control activities and computations of the simulation, including data exchange

between coupled simulation programs. It does include neither a user interface nor a

logic for a user interaction.

functional mock-up

interface for co-

simulation

One of the MODELISAR functional mock-up interfaces.

It connects the master solver component with one or more slave solvers.

functional mock-up

interface for model

exchange

One of the MODELISAR functional mock-up interfaces. It consists of the model

description interface and the model execution interface.

It connects the external model component with the solver component.

functional mock-up

trust center (FMTC)

As defined in the MODELISAR framework, FMTC describes a closed system

providing model and simulation access to authenticated users and functional mock-up

authorities through dedicated cryptographic interfaces.

functional mock-up

unit (FMU)

A “model class” from which one or more “model instances” can be build for

simulation. A FMU is stored in one zip-file as defined in section 4 consisting basically

of one xml file (see section 3) that defines the model variables and a set of C-

functions (see section 2), in source or binary form, to execute the model equations or

the simulator slave. In case of tool exection, additionally, the original simulator is

required to perform the co-simulation (compare section 3.5.2).

gateway A link between two computer programs allowing them to share information and

bypass certain protocols on a host computer.

integration algorithm The numerical algorithm to solve differential equations.

integrator A software component, which implements an integration algorithm.

interface An abstraction of a software component that describes its behavior without dealing

with the internal implementation. Software components communicate with each other

via interfaces.

 Functional Mock-up Interface for Co-Simulation

 FMI Project, MODELICA Association

 July 2017

 Page 54 of 54

Unrestricted

master/slave A method of communication, where one device or process has unidirectional control

over one or more other devices. Once a master/slave relationship between devices or

processes is established, the direction of control is always from the master to the

slaves. In some systems a master is elected from a group of eligible devices, with the

other devices acting in the role of slaves.

model A model is a mathematical or logical representation of a system of entities,

phenomena, or processes. Basically a model is a simplified abstract view of the

complex reality.

It can be used to compute its expected behavior under specified conditions.

model description file The model description file is an XML-file, which supplies a description of all properties

of a model (e.g. input/output variables).

model description

interface

An interface description to write or retrieve information from the model description file.

model execution

interface [from model

interface working

group]

An interface description to access the equations of a dynamic system from an

external program.

numerical solver see solver

output points Tool internal time grid for saving output data to file (in some tools also known as

“communication points” – but this term is used in a different way in FMI for Co-

Simulation, see above).

output step size Distance between two subsequent output points.

parameter A quantity within a model, which remains constant during simulation, but may be

changed between simulations.

Examples are a mass, stiffness, etc.

slave see master/slave

simulation Compute the behavior of one or several models under specified conditions.

(see also co-simulation)

simulation model see model

simulation program Software to develop and/or solve simulation models. The software includes a solver,

may include a user interface and methods for post processing (see also: simulation

tool, simulation environment).

Examples of simulation programs are: Amesim, Dymola, Simpack, SimulationX,

Simulink.

simulation tool see simulation program

simulator A simulator can include one or more simulation programs, which solve a common

simulation task.

solver Software component, which includes algorithms to solve models, e.g. integration

algorithms and event handling methods.

user interface The part of the simulation program that gives the user control over the simulation and

allows watching results.

