
    

Unrestricted 

Functional Mock-up Interface for 

Co-Simulation  

 

MODELICA Association Project FMI 
 

 

Document version: 1.0.1 

 July 2017 

 

• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••  

 

 

 

 
 

 

 

 



 Functional Mock-up Interface for Co-Simulation 

 FMI Project, MODELICA Association 

 July 2017 

 Page 2 of 54 

Unrestricted 

History 

 

Version Date Remarks 

1.0 2010-10-12 First version 

1.0.1 2016-05-05 AJunghanns: worked changes from ticket #370 into document, first attempt 

Second run with AJunghanns and AViel 

1.0.1 2017-07-10 FMI Steering Committee releases version 

   

   

 

License of this document 

 

Copyright © 2017, MODELICA Association Project FMI 

 

This document is provided “as is" without any warranty. It is licensed under the CC-BY-SA (Creative 

Commons Attribution-Sharealike 3.0 Unported) license, i.e., the license used by Wikipedia. Human-readable 

summary of the license text from http://creativecommons.org/licenses/by-sa/3.0/: 

You are free: 

 to Share — to copy, distribute and transmit the work, and 

 to Remix — to adapt the work 

Under the following conditions: 

 Attribution — You must attribute the work in the manner specified by the author or 

licensor (but not in any way that suggests that they endorse you or your use of the work.)  

 Share Alike — If you alter, transform, or build upon this work, you may distribute the 

resulting work only under the same, similar or a compatible license. 

The legal license text and disclaimer is available at: 

http://creativecommons.org/licenses/by-sa/3.0/legalcode 

Note: 

 Article (3a) of this license requires that any Derivative Work must clearly label, demarcate or otherwise 

identify that changes were made to the Original Work. 

 The C-header and XML-schema files that accompany this document are available under the BSD 

license (http://www.opensource.org/licenses/bsd-license.html) with the extension that modifications 

must be also provided under the BSD license. 

 If you have improvement suggestions, please send them to the FMI development group at 

contact@fmi-standard.org. 

 All contributors have signed the FMI Corporate Contributor License Agreement (CCLA). 

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.opensource.org/licenses/bsd-license.html
mailto:contact@fmi-standard.org


 Functional Mock-up Interface for Co-Simulation 

 FMI Project, MODELICA Association 

 July 2017 

 Page 3 of 54 

Unrestricted 

Abstract 

This document defines the “Functional Mock-up Interface for Co-Simulation”. While the interface 

specification “Functional Mock-up for Model Exchange” (see MODELISAR 2010 for details) gives 

standardized access to simulation model equations, the basic intention of this document is to provide an 

interface standard for coupling two or more simulation tools in a co-simulation environment. Co-

simulation is a simulation technique for coupled time-continuous and time-discrete systems that exploits 

the modular structure of coupled problems in all stages of the simulation process (pre-processing, time 

integration, post-processing).  

The data exchange between subsystems is restricted to discrete communication points (sampling points, 

synchronization points). In the time between two communication points, the subsystems are solved 

independently from each other by their individual solver. Master algorithms control the data exchange 

between subsystems and the synchronization of all slave simulation solvers (slaves). 

There are two possible ways to provide slave subsystems for co-simulation: subsystems with their 

specific solver, which can be simulated as stand-alone components (dll-files), or subsystems with their 

simulation tool, in which they have been developed. Both approaches are covered by this standard.  

FMI for Co-Simulation provides interfaces between master and slaves and supports rather simple master 

algorithms as well as more sophisticated ones. A small set of easy to use C-functions was developed to 

implement the interface. Note that the master algorithm itself is not part of the standard FMI for Co-

Simulation, but a very simple example is given and discussed in this document. 

All information about the slaves, which is relevant for the communication in the co-simulation 

environment is provided in a slave specific XML-file. In particular, this includes a set of capability flags to 

characterize the ability of the slave to support advanced master algorithms, e.g. the usage of variable 

communication step sizes, higher order signal extrapolation, or others. 

 

Changes for 1.0.1 compared to 1.0 

Most changes reflect how FMI version 2.0 has solved ambiguities present in FMI version 1.0. 

What changed Where 

Fixed headers, document source, logo, header, footer, etc.  

Clarification of fmuLocation argument Sec. 3.2 

Zero length arrays allowed in API Sec. 3.1.1 

Clarify location of additional shared libraries Sec. 4.0 

Clarify multiple valueReferences to the same variable 
and: What happens when setting aliased inputs and aliased parameters 

Sec. 3.2.1 

Removed a reference to fmiGetModelTypesPlatform Sec. 4.0 

Removed Appendix B Appendix B 
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1. Overview 

This document specifies a standardized Functional Mock-up Interface (FMI) for the coupling of two or 

more simulation models in a co-simulation environment (FMI for Co-Simulation). Co-simulation is a 

rather general approach to the simulation of coupled technical systems and coupled physical 

phenomena in engineering with focus on instationary (time-dependent) problems. FMI for Co-Simulation 

is designed both for the coupling of simulation tools (simulator coupling, tool coupling), and coupling with 

subsystem models, which have been exported by their simulators together with its solvers as runnable 

code. 

Co-simulation exploits the modular structure of coupled problems in all stages of the s imulation process 

beginning with the separate model setup and preprocessing for the individual subsystems in different 

simulation tools. During time integration, the simulation is again performed independently for all 

subsystems restricting the data exchange between subsystems to discrete communication points itc . 

Finally, also the visualization and post-processing of simulation data is done individually for each 

subsystem in its own native simulation tool. In different contexts, the communication points itc , the 

communication steps 1 ii tctc  and the communication step sizes iii tctchc  1:  are also known as 

sampling points (synchronization points), macro steps and sampling rates, respectively.  The term 

“communication point” in FMI for Co-Simulation refers to the communication between simulation tools 

and should not be mixed with the output points for saving simulation results to file.  

FMI for Co-Simulation is an interface standard for the solution of time dependent coupled systems 

consisting of subsystems that are continuous in time (model components that are described by 

instationary differential equations) or time-discrete (model components that are described by difference 

equations like, e.g., discrete controllers). In a block representation of the coupled system, the 

subsystems are represented by blocks with (internal) state variables )(tx  that are connected to other 

subsystems (blocks) of the coupled problem by subsystem inputs )(tu  and subsystem outputs )(ty . In 

this framework, the physical connections between subsystems are represented by mathematical coupling 

conditions between the inputs )(tu  and the outputs )(ty  of all subsystems [R. Kübler, W. Schiehlen: 

Two methods of simulator coupling. - Mathematical and Computer Modeling of Dynamical Systems 

6(2000)93-113]. 

FMI for Co-Simulation addresses two basic aspects: 

 the data exchange between subsystems and 

 algorithmic issues to synchronize the simulation of all subsystems and to proceed in communication 

steps (macro steps) 1 ii tctc  from initial time startttc :0  to end time stopN ttc : . 

For the first aspect, data exchange, the individual simulation tools have to be connected via MPI, 

TCP/IP, sockets or alternative ways of communication. In each individual simulation tool, these 

connections are initialized before the beginning of the time integration. In the co-simulation environment, 

the mapping from all subsystem outputs )(ty  to the subsystem inputs )(tu  has to be initialized to 

consider all physical coupling between the subsystems. 
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For the second aspect, a co-simulation specific software component is needed to organize the progress 

from startttc 0  to stopN ttc   in communication steps 1 ii tctc  and the data exchange between 

subsystems at the communication points start i stopt tc t   (exchange of subsystem outputs )( itcy ). This 

software component is called master of the co-simulation environment. It may be implemented in one of 

the individual simulation tools (master tool) or in a separate simulation backplane. In its most general 

form, the coupled system may be simulated in nested co-simulation environments and FMI for Co-

Simulation applies to each level of the hierarchy. 

FMI for Co-Simulation defines interface routines for the communication between a master and individual 

simulation tools (slaves) in a co-simulation environment. A simulation tool or the part of it prepared for 

co-simulation by implementing the FMI is called an FMU (Functional Mock-up Unit)1. 

The most common master algorithm stops at each communication point itc  the time integration of all 

slaves, collects the outputs )( itcy from all subsystems, evaluates the subsystem inputs )( itcu , 

distributes these subsystem inputs to the slaves and continues the (co-)simulation with the next 

communication step hctctctc iii  1 with fixed communication step size hc . In each slave, an 

appropriate solver is used to integrate one of the subsystems for a given communication step 1 ii tctc . 

The most simple co-simulation algorithms approximate the (unknown) subsystem inputs )(),( itcttu  by 

frozen data )( itcu for 
1i itc t tc   . 

FMI for Co-Simulation supports this classical brute force approach as well as more sophisticated master 

algorithms that adapt, e.g., the communication step size iii tctchc  1  to the solution behavior 

(communication step size control), use higher order signal extrapolation to approximate the subsystem 

inputs 1( ), ( )i iu t tc t tc   , or handle the subsystems in each communication step sequentially such that 

intermediate results from the very first subsystems may be used to improve the approximation of 

subsystem inputs )(tu  in later stages of the communication step. FMI for Co-Simulation is designed to 

support a very general class of master algorithms but it does not define the master algorithm itself. 

Subsystem inputs and subsystem outputs are described in a slave specific XML-file that contains all 

information about slave solver, slave model etc. being relevant for the co-simulation environment. The 

ability of slaves to support more sophisticated master algorithms is characterized by a set of capability 

flags that are added to the slave specific XML-file. Typical examples are the ability to handle variable 

communication step sizes ihc  and the ability to repeat a rejected communication step 1 ii tctc  with 

reduced communication step size. 

The current document is structured as follows: After this general introduction and overview, Section 2 

discusses the general phases of co-simulation workflow together with a more detailed description of all 

components of a co-simulation environment. The interface itself is defined and discussed in Section 3. 

Section 4 describes the structure of the archive called Functional Mock-up Unit (FMU), followed by a list 

                                                      

1 This definition differs slightly from the one used in the FMI for Model Exchange in that, in the case of tool coupling the or iginal 

tool is additionally required to perform the co-simulation. 
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of references and the glossary. Additional issues like future extensions of FMI for Co-Simulation, further 

examples of simulator coupling and some numerical issues are summarized in the Appendix.  

Conventions used in this Document 

Non-normative text is given in square brackets in italic font: [especially examples are defined in this 

style.]. 
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2. Co-Simulation 

This section gives an overview on co-simulation from a process perspective describing a sequence of 

phases that are part of a co-simulation task. For the subsequent phases different aspects of FMI for Co-

Simulation have to be considered. Section 2 also describes different co-simulation scenarios, which are 

called “code generation” and “tool coupling” in this document.  

2.1. Generic Co-Simulation Activity Flow 

2.1.1. Process Assumptions 

The following sections are meant to indicate the possible process steps that may be taken by simulation 

tools being part in a co-simulation setting. The overall process can be divided into a design phase, a 

deployment phase, and a simulation phase. 

 

Figure 1: Co-Simulation Process Phases 

2.1.1.1. Design Phase 

The design phase (Figure 2Figure 2) encompasses all the activities linked to the creation of a simulation 

model, the packaging of the simulation model into an FMU component, and the composition of a  

combined system model that makes use of several FMU components. 

 

 

Figure 2: Design Phase Steps 

Some vendors may only provide modeling and transformation capabilities for their simulation tools; the 

simulation tool only provides an 'FMU export' feature, and is referred to as a slave simulator. 

Other vendors may only provide composition capabilities for their simulation tools; such simulators are 

pure co-simulation platforms, and generally provide an 'FMU import' feature. A simulator of this type is 

referred to as master simulator. 

A simulation tool can also provide both FMU export and FMU import features. As a result, an FMU can 

be imported that includes itself a number of nested FMUs leading to a hierarchical composition of FMUs.  

The following paragraphs describe each individual design step in more detail. 

Modeling Step 

The modeling step is the sole responsibility of the slave simulator. The user creates a simulation model 

for a certain subsystem according to the specific requirements of the simulator.  
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Transformation Step 

Once the simulation model is ready, the user needs to decide how the subsystem model will be exported 

into an FMU implemented either with the FMI for Model Exchange API (see specification document for 

details) or with the FMI for Co-Simulation API (Figure 3Figure 3). In this document only the second case 

is discussed. 

 

 

Figure 3: FMU Export Alternatives 

The first decision is in terms of parameters; a list of model parameters is selected that will be made 

public to the master. The result is the generation of the 'Model Description' XML file which describes 

the model in terms of a black box. 

The second decision pertains to the form in which the model will be exposed to the master. Two 

alternatives are possible: 

 Code Generation: The subsystem model is converted into code, i.e., the equations as well as the 

solver are compiled into a shared library for one or more targets (similar to the FMI for Model 

Exchange). Both model code and shared library can be included in the FMU archive  (see section 4 for 

details). The master uses the shared library during a simulation run. In the XML-file this is indicated 

by the Implementation flag with the value CoSimulation_StandAlone. 

 Tool Coupling: The subsystem model and dependencies are stored directly within the FMU. The 

master needs to couple to the original slave simulator that exported the FMU to be able to perform a 

simulation run. Instead of the compiled model code the FMU archive contains a shared library of a 

slave tool specific wrapper, which is to be imported by the master tool and interfaces the external 

tool. The XML Implementation flag has the value CoSimulation_Tool (for details see also 3.5.2). 

The end-result is an FMU that contains a Model description XML file, and possibly the generated model 

code, compiled shared libraries, or the actual model files. The FMU may be published to some FMU 

library; two alternatives are possible: 
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 The slave simulator published the FMU to a proprietary location within the simulator environment, or  

 the FMI for PLM API is used to publish the FMU to a central PLM repository.  

Composition Step 

In general, co-simulation platforms require some form of composition of slave simulation models in order 

to join subsystem models to a complete simulation system. This composition may be performed in 

different manners, and typically results in some form of a component-connection graph structure (Figure 

4Figure 4). In this specification, components denote imported FMU instances and the connections 

represent the communication paths used to exchange data between FMUs. The master is then 

responsible to schedule communication between components (master algorithm).  

 

 

Figure 4: Component-Connection Graph Structure 

A component-connection graph variant commonly used is the co-simulation with signal pools (Figure 

5Figure 5). Typically a component publishes a specific output variable that is subscribed by several other 

components as input. A co-simulation signal pool model can easily be converted to a connection graph 

model. 

 

 

Figure 5: Signal-Pool Variant of a Component-Connection Graph Structure 

A master can import an FMU by reading the FMU’s zip-archive and the therein contained Model 

Description XML file. The model description provides the information required by the master to expose 

the name, the parameters, inputs and outputs of the FMU. 
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Figure 6: FMU Classifier/Instance Differences 

To ensure reusability of an FMU within the same component-connection graph, a clear distinction is 

made between classes and instances. Each specific FMU is a subsystem class with a unique identifier 

(the name of an FMU is subsystem dependent). Because an FMU may appear several times within a 

component-connection graph, an FMU is instantiated with each instance being assigned a unique 

identifier. The FMU instance denotes then a component within the component-connection graph. 

Additionally, each FMU instance stores the initial parameter values and the connection-graph can store 

the simulation parameters. 

2.1.1.2. Deployment Phase 

If co-simulation is enacted within a single host, all FMU components need to be accessible to that host. 

The master has direct file-access to the FMUs; in the simulation phase, the instantiation of FMUs can 

occur directly within the master process. 

In the context of distributed co-simulation, the master typically communicates with slave simulators 

located on remote machines. The slave simulator is instructed to load the FMU in memory, and exposes 

the loaded FMU as an instance to the master. To do so, the slave simulation requires access to the 

FMU. 
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Figure 7: Distribution of FMUs across a Co-Simulation Cluster 

Deployment refers to the act of making FMUs available to the slave simulators located remotely to the 

master; deployment can be performed in different ways.  

An offline deployment refers to the manual transport of FMUs to remote locations. Some co-simulation 

platforms perform deployment within the composition phase. FMUs are copied remotely by the user.  

An online deployment is the automatic deployment of FMUs on different hosts by the master. The user 

only needs to specify on which hosts the various FMU instances need to be transferred to.  

Either way, the end result is that the various FMUs used by the master are distributed on the intended 

hosts. 

2.1.1.3. Simulation Phase 

The simulation phase (Figure 8Figure 8) encompasses all the activities related to the execution runtime. 

The master is responsible for the lifecycle of FMU instances within a simulation run (experiment). 

 

 

Figure 8: The Simulation Phase 

The lifecycle of an FMU is comprised by the following sub-phases. 

Instantiation Sub-phase 

The master simulator is responsible for the instantiation of all FMU instances contained within the 

component-connection graph. The FMUs are then loaded into memory and instantiated. 
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Initialization Sub-phase 

Once an FMU instance is ready, the master simulator can set the initial values for each FMU-instance 

parameter as defined in the component-connection graph. All FMU instances are initialized before 

simulation can start. 

Simulation Sub-phase 

The master simulator is responsible for the proper orchestration of the different FMU instances according 

to a so-called master algorithm (see section 2.2). 

Shutdown Sub-phase 

The master simulator is responsible for the proper memory deallocation locally and remotely. All FMU 

instances need to be shutdown; optionally, the FMUs themselves may be deleted from the operating 

system. 

2.1.2. Distributed Infrastructure Assumptions 

This section relates to the general assumptions that are made in this document about the kind of co-

simulation architecture available on the market. The objective is to ensure that the FMI for co -simulation 

API is generic enough to be adopted as wide as possible.  

Focus is given to the distributed aspect of co-simulation which is of particular interest due the different 

possibilities available on the market. 

2.1.2.1. Generic Architecture 

In the simplest compute / IT scenario, co-simulation is performed on one computer with shared memory 

and a shared file system. The master simulation tool can import the shared library file from the FMU 

(Figure 9Figure 9). 

 

Figure 9: Co-simulation with generated code on a single computer 

Figure 10Figure 10 shows, how a tool coupling scenario can be performed on a single computer. From a 

user account the FMI co-simulators to be deployed are accessible without additional authentication. 
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Figure 10: Co-simulation with tool coupling on a single computer 

In a distributed co-simulation compute / IT scenario, the FMI co-simulators to be deployed are installed 

on different computers with maybe different OS (cluster computer, compute farm, computers at different 

locations) connected by LAN, WLAN, or WAN via TCP/IP. The user has authorized access (e.g., a user 

account) to the computers with the FMI simulators to be deployed. 

 

 

Figure 11: Distributed Co-simulation Infrastructure 

In such scenario, in order to couple an FMI co-simulation slave on one computer to an FMI co-simulation 

master on another computer, a so called FMI co-simulation backbone or framework has to be available 

(see Figure 11Figure 11, communication layer tool). This backbone is a special middle-ware. It consists 

of software on, both, co-simulation master and slave computer and performs the network communication 

between master and slave. In effect, the FMI co-simulation master does not notice and differentiate the 

location of the slave simulators.  

The FMI co-simulation master (simulator) couples to the involved slave simulators through their FMI in 

form of a zip-archive. Therefore, for every remote co-simulation slave an FMI zip-archive has to be 

provided on the master's computer. This zip-archive, as well as the contained shared library file (DLL), 

has to be compatible to the FMI backplane deployed for the connection with the respective slave 

simulator. The co-simulation master reads and evaluates the XML description file in the FMI zip -archive. 

The DLL contained in this zip-archive provides functions according to the FMI which are able to 
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communicate with the remote slave simulator via the FMI co-simulation backplane. The authentication on 

the remote computer(s) is also performed by this backbone. 

On the FMI co-simulation slave computer this backbone comprises an application server with an FMI 

(master side) which can couple to an FMI slave. The server accesses the zip-archive of the FMI slave. 

The application server loads/links the DLL to perform the communication between co -simulation master 

and this slave. 

2.1.2.2. Assumptions 

FMU Availability Assumption 

The general assumption is that an FMU is already available on the host where it will be started. 

This assumption is fulfilled by an online/offline deployment. 

Communication Assumption 

No assumption is made as to which communication protocol or transport shall be used to access the 

FMU instance across a network. The FMI-for-co-simulation shall not include details about host, tcp/udp 

ports, etc. 

FMI-for-co-simulation can only include local parameter specifications. The co-simulation framework 

provides the remoting capabilities and is responsible to communicate with remote FMUs. 

Simulator Assumption 

The master simulator shall be given as little knowledge as possible about the slave simulator in a tool 

coupling scenario. The objective is two fold: 

 wrap all specific parameters required by a slave simulator in an implementation exposing the FMI -for-

co-simulation; this wrapper must be provided by the slave simulator tool vendor.  

 wrap all specific parameters required by a co-simulation framework in an implementation exposing 

the FMI-for-co-simulation; this wrapper will be loaded by the master simulator, and must be provided 

by the co-simulation tool vendor. 

2.1.2.3. Instantiation Sequence 

The purpose of this section is to describe in more details the instantiation sequence required to remotely 

load an FMU instance after calling the fmiInstantiateSlave. 

In the following scenario, the co-simulation framework has already been provided with the component-

connection graph and the deployed location of FMU instances. The end result is to instantiate each FMU 

instance locally or remotely. 

 The master simulator loads the local FMU proxy, that is, the FMI wrapper (master adapter) provided 

by the co-simulation framework. 

 The co-simulation framework sends an instruction to the remote application server to load a specific 

FMU instance. 

 The remote application server selects the correct instantiation method. Two alternatives are possible:  

 The FMU is composed of a shared library that includes model and solver in a compiled form. The 

FMU shared library is directly loaded with the correct FMU instance identifier. 
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 The FMU represents a tool coupling. The MIME-type of the slave simulator is used to select the 

correct FMI wrapper provided by the slave simulator tool vendor. 

 The master simulator and slave simulator can now communicate over the FMI-for-co-simulation API. 

2.2. Numerical Co-Simulation Computation Flow 

Co-simulation is a simulation with more than one simulation tools which exchange intermediate results 

(variables, values, information) during simulation. 

A simulation tool (simulator) is a tool (algorithm, executable) that computes a model’s behavior, which 

is called simulation. In the computational sense a simulation is an autonomously running process. FMI 

for Co-Simulation is restricted to: 

 All calculated values )(tv  are time dependent functions within an a priori defined time interval 

start stopt t t  . 

 All calculations (simulations) are carried out time increasing in general. The actual time t  is running 

step by step from startt  to stopt . A tool may have the property to be able to repeat the simulation of 

parts of ],[ stopstart tt or the whole time interval ],[ stopstart tt . 

 After simulation the interval ],[ stopstart tt  is covered by subintervals ],[ 1ii tt  with Ni 0 , 1 ii tt , 

starttt 0 , stopN tt  . The subinterval length ih is called step size of the 
thi  step, iii tth  1 . This 

step size is simulation tool internal. 

A simulation tool can be coupled, if it has the following properties: 

 The simulation tool can be given a time value itc , start i stopt tc t  . 

 The simulation can be interrupted when itc is reached. 

 During the interrupted simulation the simulation tool can both receive values )( itcu and send values

)( itcy . 

 During the interrupted simulation the simulation tool can be given a new time value 1itc , 

1i i stoptc tc t  to simulate the time subinterval 1i itc t tc    

 The subinterval length ihc is called step size of the 
thi  communication step, iii tctchc  1 . In 

general, the communication step size can be positive, zero, but not negative.  

y = S(u)

y(tci)u(tci)

 

Figure 12: Data flow of a simulation tool at communication points 
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The item simulation tool in the sense of this description can be a huge variety of tools: a powerful 

simulator like AmeSim, Dymola, Simpack, SimulationX, … but also a C program, which reads data from 

a file without having its own solver. Within a system to be simulated many different tools should be able 

to interact. 

2.2.1. Master-Slave Structure 

Co-simulation is used to solve a coupled system by simulating each part with its own coupleable 

simulation tool. Once the system is established there exists a directed signal flow between the involved 

simulation tools. Therefore it is assumed that the signal flow between the coupled simulation tools is 

directed. The coupled simulation tools form a directed graph G the nodes of which are the simulation 

tools, and the directed lines describe the data flow.  

Simulation tool A

Simulation tool B

Simulation tool E

Simulattion tool D

Simulation tool C

Simulation tool G

Simulation tool F

 

Figure 13: Example graph G of coupled simulation tools 

Instead of directly coupling, a master is assumed to be located between the single simulation tools which 

are now called slaves. Each arrow of the graph G is regarded as to go “through” the master.  

master

simulator A

simulator A

simula

tor A

simul

ator A

si

mu

lat

or 

A

slave A

slave  B

slave  E

slave  D

slave C

slave G

slave  F

 

Figure 14: Master-Slave structure 

Slaves are assumed to communicate with the master only. In this description the interface between 

master and slave is defined.  



 Functional Mock-up Interface for Co-Simulation 

 FMI Project, MODELICA Association 

 July 2017 

 Page 18 of 54 

Unrestricted 

The master itself can be involved in a higher order simulation environment serving as slave. On each 

level of such a nested master hierarchy the FMI for Co-Simulation can be applied. 

2.2.2. Basic Co-Simulation Computation Flow 

The slaves will have properties which influence the possible master algorithms, especially restrict them. 

The master has to select suitable algorithms. In this description the master algorithms will be neither 

defined nor standardized. Only the interface between master and slaves is to be defined. Nevertheless, 

a basic co-simulation flow is assumed: 

2.2.2.1. Initialization Sub-phase 

All simulation tools are prepared for starting the co-simulation. The communication links between master 

and slaves are established. The master receives the properties of the slaves. Additionally the master 

receives the connection graph G e.g. by user input. The master chooses the master algorithm based on 

the capabilities of the involved slaves as well as the connection graph G, and possibly user inputs. 

2.2.2.2. Simulation Sub-phase 

The master forces the slaves to simulate the time interval ],[ stopstart tt  by stepwise solving master 

subintervals (communication steps) ],( 1ii tctc  with Ni 0 , 1 ii tctc , startttc 0 , stopN ttc  . The 

subinterval length ihc is called communication step size of the 
thi  step, iii tctchc  1 . 

The boundary points 1, ii tctc of each subinterval are called communication points. It is allowed that 

the communication step size ihc can be zero ( ii tctc 1 , iteration). In particular for the first simulation 

step and at an event (event iteration) a communication step size of zero length is appropriate, 0ihc . 

It depends on the master algorithm how the communication step size, and the communication points are 

chosen. The master algorithm itself uses both the slave properties, and the graph G. The communication 

points can be chosen by the master individually for each slave, and the master can start  and stop each 

slave independently from other slaves.  

Before a subinterval is simulated, the slave receives its input values )( itcu  and possibly derivatives with 

respect to time ( )( itcu , )( itcu , …) as well as the communication step size ihc . After starting the slave 

simulation of the communication step ],[ 1ii tctc  the master receives the slave output values )( 1itcy  

and possibly derivatives with respect to time ( )( 1itcy , )( 1itcy , …). Furthermore, the slave status has 

to be transferred to the master. Especially if the slave simulation fails, further communication is 

necessary.   

2.2.2.3. Shutdown Sub-phase 

By giving a closing information the master forces the slaves to stop. 

2.2.2.4. Summary of Transferred Information via FMI for Co-Simulation 

The interface between master and slave must be able to transfer the following information:   
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To be transferred  Direction When 

Properties of the slave To master Initialization sub-phase 

Status of the slave  To master After communication step  

Slave input values )( itcu and derivatives 

(optional) 

To slave Before communication step 

Slave output values )( 1itcy  and derivatives 

(optional) 

To master After communication step and 

after initialization 

Control commands, at least 

- simulate communication step ],[ 1ii tctc  

- finish simulation 

To slave At communication step 

 

Shutdown sub-phase 

 

The connection graph G which specifies the directed connection between inputs and outputs of the 

slaves is also needed by the master. The input of this graph G is not standardized in this document. The 

graph input can be achieved e.g. by a user input. 

All information regarding the (static) properties of slaves will be collected within XML-files. By reading 

the XML files the master gets the properties of the slaves. 

2.2.3. Master  

The tasks of the master are: 

Tasks to be done in the initialization sub-phase: 

 Ask the properties of the slaves. 

 Analyze the graph G. 

 Chose a master algorithm. 

In the simulation sub-phase the master provides subintervals for each slave. 

Before the slave simulation of a communication step ],[ 1ii tctc  the master tasks are: 

 Calculate the communication step size ihc , as well as the communication step ],[ 1ii tctc . 

 Calculate the slave input values )( itcu and possibly their derivatives )( itcu , )( itcu , … 

 Transfer itc , 1itc , )( itcu and possibly )( itcu , )( itcu , … to the slave. 

 Start the slave to simulate the communication step ],[ 1ii tctc . 

 Wait for slave finishing. 

After the slave simulation of the communication step ],[ 1ii tctc  the tasks are: 

 Ask the status of the slave, interpret it. 

 Transfer )( 1itcy  and possibly )( 1itcy , )( 1itcy , … to the master, if the communication step is 

calculated regularly, or after initialization. [adapt State Machine] 

 Transfer additional information to the master, if the communication step is not calculated regularly, 

e.g. error messages, or an intermediate stop time 
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In the shutdown sub-phase after the complete simulation, or in special cases  

 Stop the complete simulation. 

2.2.4. Slave 

The tasks of the slave are: 

Tasks to be done in the initialization sub-phase: 

 Send the properties of the slave to the master. 

Before the simulation of a communication step ],[ 1ii tctc  the tasks are: 

 Stop, if stop command is received (shutdown sub-phase). 

 Receive itc , 1itc , )( itcu and possibly derivatives )( itcu , )( itcu , … from the master. 

 Simulate the communication step ],[ 1ii tctc  after receiving the simulate-command. 

 Transfer )( 1itcy  and possibly derivatives )( 1itcy , )( 1itcy , … to the master, if the communication 

step is calculated regularly. 

 Transfer additional information to the master, if the subinterval is not calculated regularly, e.g. error 

messages, or intermediate stop time. 

After the simulation of a subinterval ],[ 1ii tctc  the tasks are: 

 Wait for the next command. 

This roughly described communication is detailed in section 3. 

2.2.5. Example of Master Algorithm 

One of the simplest master algorithms is like this:  

 The communication step size is constant: ihchci  . 

 For all slaves the first input value is chosen by the master, e.g. 0)( starttu . 

 The input values )( itcu  are transferred to all slaves as well as the communication step size hc . The 

slave simulation is started, and the resulting output values )( 1itcy are transferred to the master. This 

is done for increasing i  until stopt  is reached. 

 At each communication point itc  the master distributes the received slave results )( itcy  to the slave 

inputs )( itcu according to the connection graph for the next communication step ],[ 1ii tctc . 

The simplest way to use the input values by the slaves is to keep u constant during the slave simulation: 

)()( itcutu   for all 1 ii tcttc . 

For this simple master algorithm case a pseudo code example is given in the next section.  

More advanced master algorithms analyze the connection graph to elaborate an effective calling order 

for the slaves. The communication step size can be adapted, and if possible communication steps can 

be repeated to allow iterative master algorithms. 
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3. The Application Programming Interface 

The interface consists of two parts: 

 Co-Simulation Interface 

A set of C-functions for exchange of in/output values and status information. 

 Co-Simulation Description Schema 

The schema defines the structure and content of an XML-file. This file contains the “static” information 

concerning the model (dimensions, input/output variables…) and the simulator (capabilities, …) which 

is used to compute the model.  

3.1. The Co-Simulation Interface 

This chapter contains the interface description to access the in/output data and status information of a 

co-simulation slave from a C program.  

3.1.1. Platform Dependent Definitions ( fmiPlatformTypes.h) 

In order to simplify porting, no C types are used in the function interfaces, but the alias types defined in 

this section. All definitions in this section are provided in the header file “fmiPlatformTypes.h”1. 

 

typedef void* fmiComponent; 

 This is a pointer to a co-simulation slave specific data structure. It contains all information 

needed by the slave to process the co-simulation. 

typedef unsigned int fmiValueReference; 

 This is a handle to a (base type) variable value of the model. The handle is unique at least 

with respect to the corresponding base type (like fmiReal). All structured entities, like 

records or arrays, are “flattened” in to a set of scalar values of type fmiReal, fmiInteger 

etc. An fmiValueReference references one such scalar. The coding of 

fmiValueReference is a “secret” of the modeling environment that generated the model. 

The interface only provides access to variables via this handle. Extracting concrete 

information about a variable is specific to the used environment that reads the Model 

Variable File in which the value handles are defined. 

If a function in the following sections is called with a wrong fmiValueReference value 

(e.g. setting an output with an fmiSetReal(...) function call), then the function has to 

return with an error (fmiStatus = fmiError), i.e., the processing of the co-simulation 

must be terminated. 

typedef double      fmiReal   ;  // Real number (64 bits) 

typedef int         fmiInteger;  // Integer number (32 bits) 

typedef char        fmiBoolean;  // Boolean number (8 bit, 

                                 // two values: fmiFalse, fmiTrue) 

typedef const char* fmiString ;  // Character string (′\0′ terminated) 

                                 // UTF8 encoded 

#define fmiTrue  1 

                                                      

1 This file is identical to fmiModelTypes.h from Model Exchange 1.0. In the follow up version Model -Exchange will also use this 

file. 
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#define fmiFalse 0 

 These are the basic data types used in the interfaces of the C-functions. More data types 

might be included in future versions of the interface.  

If an fmiString variable is passed as input argument to a function and the string shall be 

used after the function has returned, the whole string must be copied (not only the pointer) 

and stored in the internal memory, because there is no guarantee for the lifetime of the 

string after the function has returned. 

For arrays passed between environment and the FMU, zero-length arrays are allowed and then NULL is 

allowed – not required – for the corresponding array pointer. 

3.1.2. Status Returned by Functions 

This section defines the “status” flag (an enumeration of type fmiStatus defined in file 

“fmiModelFunctions.h”) that is returned by all functions to indicate the success of the function call.  

 

typedef enum {fmiOK, 

              fmiWarning,  

              fmiDiscard, 

              fmiError, 

              fmiFatal, 

              fmiPending 

             } fmiStatus; 

 Status returned by functions. The status has the following meaning 

 fmiOK – all well 

 fmiWarning – there are things not quite right, but the computation can continue. 

Function “logger” was called in the model (see below) and it is expected that this 

function has shown the prepared information message to the user. 

 fmiDiscard – can be returned by fmiDoStep(...) or fmiGetSlaveStatus(..., 

fmiDoStepState,...). See section 3.2.2. Is returned also if the slave is not able to 

return the required status information. The master has to decide if the simulation run 

can be continued anyway. 

 fmiError – the slave encountered an error. If one of the functions (except 

fmiDoStep(...)) returns fmiError, the simulation cannot be continued and 

function fmiFreeInstance(...) must be called. Function “logger” was called (see 

below) and it is expected that this function has shown the prepared information 

message to the user. 

 fmiFatal – the slave is irreparably corrupted. Function logger was called (see 

below) and it is expected that this function has shown the prepared information 

message to the user. It is not possible to call any other function of the slave. 

 fmiPending – is returned if the slave executes the function in an asynchronous way. 

That means the slave starts to compute but returns immediately. The master has to 

call fmiGetStatus(..., fmiDoStepStatus) to find out, if the slave is ready. Can 

be returned only by the function fmiDoStep(...) and by fmiGetStatus (see 

section 3.2. 

 

3.1.3. Inquire Platform and Version Number of Header Files 

This section documents functions to inquire information about the header files used to compile its 

functions. 
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const char* fmiGetTypesPlatform(); 

 Returns the name of the set of (compatible) platforms of the “fmiTypes.h” header file 

which was used to compile the functions of the Model Exchange interface. The function 

returns a pointer to the static variable “fmiTypesPlatform” defined in this header file. The 

standard header file as documented in this specification has version “standard32” (so this 

function usually returns “standard32”). 

const char* fmiGetVersion(); 

 Returns the version of the implemented co-simulation interface functions. If a slave supports 

the interface as it is described in this document it has to return “1.0”. 

 

3.2. Creation and Destruction of Co-Simulation Slaves 

This section documents functions that deal with instantiation and destruction of co-simulation slaves.  

 

fmiComponent fmiInstantiateSlave(fmiString instanceName, fmiString fmuGUID, 

 fmiString fmuLocation, fmiString mimeType, 

 fmiReal timeout, fmiBoolean visible, 

 fmiBoolean interactive, 

 fmiCallbackFunctions functions,  

 fmiBoolean loggingOn) 

 Returns a new instance of a co-simulation slave. If a null pointer is returned, then 

instantiation failed. In that case, function “functions->logger” was called and detailed 

information is transferred given there. A slave can be instantiated many times. This function 

must be called successfully, before any of the following functions can be called. The slave 

has to perform all actions which are necessary before a simulation run starts (e.g. loading 

the model file, compilation...). 

Argument instanceName is a unique identifier for a given FMI Component instance. 

This instance identifier is used to identify a component within a co-simulation graph model, 

and can be used for logging messages. This argument cannot be null. 

Argument fmuGUID is used to check that the co-simulation description file is 

compatible with the model file used by the slave. It is a vendor specific globally unique 

identifier of the co-simulation description file. It is stored in the description file as attribute 

guide of fmiModelDescription (See section 3.5). The fmuGUID read from the co-simulation 

description file and passed to fmiInstantiateSlave must be identical to the one stored 

in the used model (e.g., it is a “fingerprint” of the relevant information stored in the 

description file), otherwise the model and the description file are not consistent to each 

other. This argument cannot be null. 

Argument fmuLocation is an URI according to the ietf RFC3986 syntax to indicate 

the access path to the root directory of the unpacked content of the FMU file. The following 

protocols must be understood: (Mandatory) file:// (Optional) http(s):// ftp:// (Reserved) ‘fmi://’ 

for fmi for PLM.  

Argument mimeType represents the MIME type (ietf RFC 2045, 2046, 2047, 2048, 

2049) of the ‘simulator’, e.g., ‘application/x-<simulator name>’, ‘application/x-

fmu-openmodelica’. If the FMU contains a shared library, i.e., Model exchange + solver, 

the following mime-type should be used: ‘application/x-fmu-sharedlibrary’.  This 

mimetype is typically used to help identify which simulator or FMI wrapper DLL is to be 

started for the specified FMU in the tool coupling scenario. 
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Special mimetype could be ‘application/x-fmu-modelica’ to be used by any modelica 

simulators. This argument cannot be null. 

Argument timeout is a communication timeout value in milli-seconds to allow inter-

process communication to take place. A timeout value of 0 indicates an infinite wait period. 

Argument visible indicates whether or not the simulator application window needed 

to execute a model should be visible, i.e., fmiFalse value indicates that the simulator is 

executed in batch mode, and fmiTrue value indicates that the simulator is executed in 

interactive mode. Use case: in interactive mode, it should be possible to explicitly 

acknowledge start of simulation / instantiation / initialization; acknowledgement is non-

blocking. 

Argument interactive indicates whether the simulator application must be manually 

started by the user, i.e., fmiFalse value indicates that the co-simulation tool automatically 

starts the simulator application and executes the model referenced in the model description, 

and fmiTrue value indicates that the simulator indicates that the simulator application 

must be manually started by the user. 

Argument functions provides callback functions to be used from the model functions 

to utilize resources from the environment (see type fmiCallbackFunctions below). 

If loggingOn=fmiTrue, debug logging is enabled. If loggingOn=fmiFalse, debug 

logging is disabled. 

typedef struct { 

 void (*logger)(fmiComponent c, fmiString instanceName,  

  fmiStatus status, fmiString category, 

  fmiString message, ...); 

 void (*stepFinished) (fmiComponent c, fmiStatus status); 

 void* (*allocateMemory)(size_t nobj, size_t size); 

 void  (*freeMemory)    (void* obj); 

 } fmiCallbackFunctions; 

 The struct contains pointers to functions provided by the environment to be used by the 

slave. In the default fmiFunctions.h file, typdefs for the function definitions are present to 

simplify the usage. This is non-normative. The functions have the following meaning: 

Function logger: 

Pointer to a function that is called in the model, usually if the model function does not 

behave as desired. If “logger” is called with “status = fmiOK”, then the message is a 

pure information message. “instanceName” is the instance name of the model that calls 

this function. “category” is the category of the message. Usually, “category” is only used 

for debug messages in order that the environment can filter the debug messages to be 

shown. The meaning of “category” is defined by the modeling environment that generated 

the model code. Argument “message” is provided in the same way and with the same 

format control as in “printf(...)”. In the simplest case, this function might only print the 

message. It might also just store the message in a stack of buffers and via options in the 

environment the printing of the messages is controlled. 

The logger function will append a line break to each message when writing messages after 

each other to a terminal or file (the messages may also be shown in other ways, e.g. as 

separate text-boxes in a GUI). The caller may include line-breaks (using "\n") within the 

message, but should avoid trailing line breaks. 

Variables are referenced in a message with “#<Type><ValueReference>#” where 

<Type> is “r” for fmiReal, “i” for fmiInteger, “b” for fmiBoolean and “s” for fmiString. 

If character “#”shall be included in the message, it has to be prefixed with “#”, so “#” is an 
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escape character. Example: 

A message of the form 

“#r1365# must be larger than zero (used in IO channel ##4)” 

might be changed by the environment to 

“body.m must be larger than zero (used in IO channel #4)” 

if “body.m” is the name of the fmiReal variable with fmiValueReference = 

1365. 

Function stepFinished: 

Optional call back function to signal if the computation of a communication step is 

finished. A NULL pointer can be provided. In this case fmiDoStep has to be carried 

out synchronously. If a pointer to a function is provided, it must be called after a 

completed communication step. 

Function allocateMemory: 

Pointer to a function that is called in the model if memory needs to be allocated. It is not 

allowed that the model uses malloc, calloc or other memory allocation functions. One 

reason is that these functions might not be available for embedded systems on the target 

machine. Another reason is that the environment may have optimized or specialized 

memory allocation functions. allocateMemory returns a pointer to space for a vector of 

nobj objects, each of size “size” or NULL, if the request cannot be satisfied. The space is 

initialized to zero bytes (a simple implementation is to use calloc from the C standard 

library). 

Function freeMemory: 

Pointer to a function that must be called in the model if memory is freed that has been 

allocated with allocateMemory. If a NULL pointer is provided as input argument obj, 

the function shall perform no action (a simple implementation is to use free from the 

C standard library; in ANSI C89 and C99, the null pointer handling is identical as 

defined here). 

The functions allocateMemory and freeMemory can be ignored by slaves. This is 

signalled by setting the capability flag canNotUseMemoryManagementFunctions. 

 
fmiStatus fmiInitializeSlave(fmiComponent c, fmiReal tStart, 

                             fmiBoolean StopTimeDefined, fmiReal tStop); 

 Informs the slave that the simulation run starts now. 

The arguments tStart and tStop can be used to check whether the model is valid within 

the given boundaries or to allocate memory which is necessary for storing results. If the 

master tries to compute past tStop the slave returns fmiError. 

 

fmiStatus fmiTerminateSlave(fmiComponent c); 

 Is called by the master to signal the slave the end of the co-simulation run. 

fmiStatus fmiResetSlave(fmiComponent c); 

 Is called by the master to reset the slave after a simulation run. Before starting a new run, 

fmiInitializeSlave is to be called. 

void fmiFreeSlaveInstance(fmiComponent c); 

 Disposes the given instance, unloads the loaded model, and frees all the allocated memory 

and other resources that have been allocated by the functions of the co-simulation 

interface. 

fmiStatus fmiSetDebugLogging(fmiComponent c, fmiBoolean loggingOn);  
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 If loggingOn=fmiTrue, debug logging is enabled, otherwise it is switched off. 

 

3.2.1. Transfer of input / output values and parameters 

Input and output variables are identified with a variable handle called “value reference”. The handle is 

defined in the co-simulation description file (as “ValueReference” in element “ScalarVariable”). It is a 

unique reference within each Slave instance for a scalar variable with respect to its base type (like 

fmiReal) and is internal information of the slave. 

 

fmiStatus fmiSetReal   (fmiComponent c, const fmiValueReference vr[],  

 sizet nvr, const fmiReal value[]); 

fmiStatus fmiSetInteger(fmiComponent c, const fmiValueReference vr[],  

 sizet nvr, const fmiInteger value[]); 

fmiStatus fmiSetBoolean(fmiComponent c, const fmiValueReference vr[],  

 sizet nvr, const fmiBoolean value[]); 

fmiStatus fmiSetString (fmiComponent c, const fmiValueReference vr[],  

 sizet nvr, const fmiString value[]); 

 Set values of inputs. Argument vr is a (possibly empty) vector of nvr value references that 

define the variables that shall be set. Argument value is a vector with the actual values of 

these variables. The slave has to copy the content of the value array if it needs them after 

returning. The master may deallocate the array. 

Restrictions and clarifications on using the fmiSetXXX functions (see also section 3.3): 

1. These functions can only be called after calling fmiInstantiateSlave(…) and 

before fmiFreeSlave(...). 

2. Besides (1), they can always be called on inputs (ScalarVariable.Causality = “input”). 

3. For parameters (ScalarVariable.causality = “input” and ScalarVariable.variability = 

“parameter”) the functions can only be called between fmiInstantiateSlave(...) 

and fmiInitializeSlave(...). 
4. If a value reference appears multiple times in vr[] then the last value will be set. [This 

way the results is the same as calling the function multiple times with the same value 

reference.] 

5. Setting aliased parameters and inputs variables: The last call to fmiSetXXX() will 

define the value of the aliased variable(s). 

If no set function is called for a variable it is initialized by the slave to its default value. 

 

In order to enable the slave to interpolate the continuous real inputs between communication steps the 

derivatives of the inputs with respect to time can be provided. To allow higher order interpolation also 

higher derivatives can be set. Whether a slave is able to interpolate and therefore needs this information 

is provided by the capability canInterpolateInputs. 

 

fmiStatus fmiSetRealInputDerivatives(fmiComponent c,  

 const fmiValueReference vr[],  

 sizet nvr, const fmiInteger order[], 

 const fmiReal value[]); 

 Sets the n-th time derivative of real input variables. Argument “vr” is a (possibly empty) 
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vector of value references that define the variables whose derivatives shall be set. The array 

“order” contains the orders of the respective derivative (1 means the first derivative, 0 is not 

allowed). Argument “value” is a vector with the values of the derivatives. “nvr” is the 

dimension of the vectors. 

Restrictions on using the function are the same as for the fmiSetReal function.  

 

Inputs and their derivatives are set with respect to the beginning of a time step.  

Output variables are handled in the same way using the following functions:  

 

fmiStatus  fmiGetReal( fmiComponent c, const fmiValueReference vr[],  

  sizet nvr, fmiReal value[]); 

fmiStatus fmiGetInteger( fmiComponent c, const fmiValueReference vr[], 

  sizet nvr, fmiInteger value[]); 

fmiStatus fmiGetBoolean( fmiComponent c, const fmiValueReference vr[], 

  sizet nvr, fmiBoolean value[]); 

fmiStatus  fmiGetString( fmiComponent c, const fmiValueReference vr[],  

  sizet nvr, fmiString value[]); 

 Get actual values of variables by providing the variable handles. 

 

To allow interpolation/approximation of the real output variables between communication steps (if they 

are used as inputs for other slaves) the derivatives of the outputs with respect to time can be read. 

Whether the slave is able to provide the derivatives of outputs is given by the unsigned integer capability 

flag MaxOutputDerivativeOrder. It delivers the maximum order of the output derivative. If the actual 

order is lower (because the order of integration algorithm is low), the retrieved value is  0. 

Example: If the internal polynomial is of order 1 and the master inquires the second derivative of an 

output, the slave will return zero. 

The derivatives can be retrieved by: 

 

fmiStatus fmiGetRealOutputDerivatives (fmiComponent c,  

 const fmiValueReference vr[],  

 sizet nvr, const fmiInteger order[], 

 fmiReal value[]); 

 Retrieves the n-th derivative of output values. Argument “vr” is a vector of “nvr” value 

references that define the variables whose derivatives shall be retrieved. The array “order” 

contains the order of the respective derivative (1 means the first derivative, 0 is not allowed). 

Argument “value” is a vector with the actual values of the derivatives.  

Restrictions on using the function are the same as for the fmiGetReal function. 

 

The returned outputs correspond to the current slave time. E. g. after a successful fmiDoStep(...) the 

returned values are related to the end of the time step. 

This standard supports polynomial interpolation and extrapolation as well as more sophisticated signal 

extrapolation schemes like rational extrapolation, see Appendix D.   
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3.2.2. Computation 

The computation of time steps is controlled by the following function. 

 

fmiStatus fmiDoStep( fmiComponent c, fmiReal currentCommunicationPoint, 

 fmiReal communicationStepSize, fmiBoolean newStep); 

 The computation of a time step is started.  

The parameter currentCommunicationPoint is the current communication point of the master 

(tci). Parameter communicationStepSize is the communication step size. If the master 

carries out an event iteration the parameter communicationStepSize is zero. The 

Parameter newStep is fmiTrue if the last communication step is accepted by the master 

and a new communication step is started.  

Depending on the internal state of the slave and the last call of fmiDoStep(...) the slave 

has to decide which action is to be done before the step is computed. 

The function returns: 

 fmiOK -  if the communication step was computed successfully until its end. 

 fmiDiscard – if the slave computed successfully only a subinterval of the 

communication step. The master can call the appropriate fmiGetXXXStatus functions 

to get further information. 

 fmiError – the communication step could not be carried out at all. The master can try 

to repeat the step with other input values and/or an other communication step size. 

 fmiPending – is returned if the slave executes the function in an asynchronous way. 

That means the slave starts the computation but returns immediately. The master has 

to call fmiGetStatus(...,fmiDoStep,...) to find out, if the slave is ready. 

fmiCancelStep(...) can be called to cancel the current computation. It is not 

allowed to call any other function during a pending fmiDoStep(…). 

 
fmiStatus fmiCancelStep(fmiComponent c); 

 Can be called if fmiDoStep returned fmiPending in order to stop the current asynchronous 

execution. The master calls this function if e.g. the co-simulation run is stopped by the user 

or one of the slaves. Afterwards it is only allowed to call the functions fmiTerminateSlave, 

fmiResetSlave, or fmiFreeSlaveInstance. 

 

It depends on the capabilities of the slave which parameter constellations and calling sequences are allowed 

(see 3.5.1). 

3.2.3. Retrieving of Status Information from the Slave 

Status information is retrieved from the slave by the following functions: 

 

fmiStatus  fmiGetStatus( fmiComponent c, const fmiStatusKind s,  

  fmiStatus* value); 

fmiStatus  fmiGetRealStatus( fmiComponent c, const fmiStatusKind s,  

  fmiReal* value); 

fmiStatus  fmiGetIntegerStatus( fmiComponent c, const fmiStatusKind s, 

  fmiInteger* value); 

fmiStatus  fmiGetBooleanStatus( fmiComponent c, const fmiStatusKind s, 

  fmiBoolean* value); 

fmiStatus  fmiGetStringStatus( fmiComponent c, const fmiStatusKind s, 

  fmiString* value); 

 Informs the master about the actual status of the simulation run. Which status information is 
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to be returned is specified by the argument fmiStatusKind. It depends on the capabilities 

of the slave which status information can be given by the slave (see 3.5.1). If a status is 

required which cannot be retrieved by the slave it returns fmiDiscard. 

typedef enum {fmiDoStepStatus, 

  fmiPendingStatus, 

  fmiLastSuccessfulTime, 

 } fmiStatusKind; 

 Defines which status is inquired.  

 

The following status information can be retrieved from a slave: 

 

Status Type of retrieved 

value 

Description 

fmiDoStepStatus fmiStatus Can be called when the fmiDoStep function returned 

fmiPending. The function delivers fmiPending if the 

computation is not finished. If the computation is 

finished meanwhile the function returns the result of 

the asynchronous executed fmiDoStep(...) call. 

fmiPendingStatus fmiString Can be called when the fmiDoStep function returned 

fmiPending. The function delivers a string which 

informs about the status of the currently running 

asynchronous fmiDoStep computation. 

fmiLastSuccessfulTime fmiReal Returns the time until the last communication step was 

computed successfully. Can be called after 

fmiDoStep(...) returned fmiDiscard. 

...   

 

3.3. State Machine of Calling Sequence from Master to Slave 

The following state machine demonstrates the possible calling sequence. The following abbreviations 

are used: 

 fmiFunc(...) is one of the functions fmiGetVersion(), fmiGetTypesPlatform(), 

fmiSetDebugLogging(...) 

 XXX is one of Real, Integer, Boolean, String 

 ts, tm, h are internal variables of the slave 
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Figure 15: State-machine for the calling sequence of co-simulation interface C-functions  

3.4. Pseudo Code Example 

In the following example, the usage of the FMI functions is sketched in order to clarify the typical calling 

sequence of the functions in a simulation environment. The example is g iven in a mix of pseudo-code 

and “C”, in order to keep it small and understandable.  We consider two slaves. Both have one 

continuous real input and one continuous real output which are connected in the following way:  

 

Figure 16: Connection graph of the slaves  

We assume no algebraic dependency between input and output of each slave. The slaves do not support 

asynchronous execution of fmiDoStep(...). The code demonstrates the simplest master algorithm as 

shown in section 2.2.5. 

 Constant communication step size. 

 No repeating of communication steps. 

 The slaves do not support asynchronous execution of fmiDoStep.  

The error handling is implemented in a very rudimentary way.  
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////////////////////// 

//Initialization sub-phase 

 

//Instantiate both slaves 

fmiComponent s1 = fmiInstantiateSlave("Tool1", "", "Model1", "", ...); 

fmiComponent s2 = fmiInstantiateSlave("Tool1", "", "Model2", "", ...); 

// tStart needs to be between startTime and stopTime from the XML-file 

tStart = 0; 

// tStop needs to be between startTime and stopTime from the XML-file 

tStop = 10; 

// communication step size 

h = 0.01; 

 

//Initialize slaves 

status = fmiInitializeSlave(s1, tStart, fmiTrue, tStop); 

if(status == fmiOK) 

 ret = fmiInitializeSlave(s2, tStart, fmiTrue, tStop); 

 

////////////////////// 

//Simulation sub-phase 

 

//Current master time 

tc = tStart; 

 

while((tc < tStop) && (status == fmiOK)) 

 //retrieve outputs 

 fmiGetReal(s1, ..., 1, &y1); 

 fmiGetReal(s2, ..., 1, &y2); 

 //set inputs 

 fmiSetReal(s1, ..., 1, &y2); 

 fmiSetReal(s2, ..., 1, &y1); 

  

 //call slaves 

 status = fmiDoStep(s1, tc, h, fmiTrue); 

 if(status == fmiOK) 

  status = fmiDoStep(s2, tc, h, fmiTrue); 

  

 //increment master time 

 tc+=communicationStepSize; 

} 

 

////////////////////// 

//Shutdown sub-phase 

if (status == fmiOK) 

{ 

 fmiTerminateSlave(s1); 

 fmiTerminateSlave(s1); 

 //Reset slaves 

 fmiResetSlave(s1); 

 fmiResetSlave(s2); 

} 

 

if (status != fmiFatal) 

{ 

 //cleanup slaves 

 fmiFreeSlaveInstance(s1); 

 fmiFreeSlaveInstance(s2); 

} 
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3.5. The Co-Simulation Description Schema 

The FMI for co-simulation reuses the XML schema encoding conventions and data types as defined by 

the FMI for model exchange (in section 3). 

However, there are two important differences: 

 The “fmiModelDescription.xsd” definition has been modified to include an Implementation element. 

 An additional schema file “fmiImplementation.xsd” has been added to include the elements required 

to support co-simulation description. 

The following sections describe the amendments made to the fmiModelDescription schema and 

detailed information related to the co-simulation implementation element (fmiImplementation). 

3.5.1. Description of a Model for Co-Simulation (fmiModelDescription) 

The FMI for Co-Simulation modifies the model description format of FMI for Model Exchange, by 

appending an Implementation element; the reader is referred to section 3.1 of FMI for Model 

Exchange specification to understand the details of the top level description. 

 

The Implementation element is optional; if present, the import tool should understand the model 

description as applying to co-simulation. As a consequence, the import tool must select the proper FMI 

API. The “attributes” part of fmiModelDescription is not changed.  
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3.5.2. Definition of an Implementation 

An ‘Implementation’ in the co-simulation context can be either CoSimulation_Tool or 

CoSimulation_StandAlone. 

The main difference between these implementations relates to the existence of the original model. A tool 

execution requires that the original tool is available to be executed in co-simulation mode; in a stand-

alone execution, the slave is completely contained inside the FMU in source code or binary format 

(shared library). 

 

The Implementation element can have one of the element choices CoSimulation_StandAlone or 

CoSimulation_Tool, which are described in the following table. 

Name Description 

CoSimulation_StandAlone This element is used when “FMI for Co-Simulation” code 
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generators are used to transfer models into compilable source 

code. The slave is available either in source code form or 

binary format (shared library or executable). 

CoSimulation_Tool This element is used when a slave simulation tool implements 

the “FMI for Co-Simulation” API and models can be directly 

executed without code generation being required. 

The Element CoSimulation_StandAlone consists of a Capabilities element, the element 

CoSimulation_Tool consists of a sequence of Capabilities and Model elements. 

The elements Capabilities and Model are described in the following sections. 

3.5.2.1. Capability Flags 

The Capabilities element is based on the type definition fmiCoSimulationCapabilities, which is 

defined as follows. 

 

The Capabilities element can contain the following optional attributes.  

 

Attribute Name Description 

canHandleVariableCommunicationStepSize The slave can handle variable communication 

step size. The communication step size 

(parameter communicationStepSize of 

fmiDoStep(...) ) has not to be constant for 

each call. 

canHandleEvents The slave supports event handling during co-

simulation. The communication step size 
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(parameter communicationStepSize of 

fmiDoStep(...)) can be zero. 

canRejectSteps This flag indicates the slave’s capability to 

discard and repeat a communication step. The 

parameter newStep of fmiDoStep(...) can 

be fmiFalse. The parameter 

currentCommunicationTime can be constant 

in consecutive fmiDoStep(...) calls. 

canInterpolateInputs The slave is able to interpolate continuous 

inputs. Calling of 

fmiSetRealInputDerivatives(...) has an 

effect for the slave. 

maxOutputDerivativeOrder The slave is able to provide derivatives of 

outputs with maximum order. Calling of 

fmiGetRealOutputDerivatives(...) is 

allowed. 

canRunAsynchronuously This flag describes the ability to carry out the 

fmiDoStep(...) call asynchronously. 

canBeInstantiatedOnlyOncePerProcess This flag indicates cases (especially for 

embedded code), where only one instance per 

FMU is possible  

(multiple instantiation is default = false; if 

multiple instances are needed, the FMUs must 

be instantiated in different processes). 

canNotUseMemoryManagementFunctions If true, the slave uses its own functions for 

memory allocation and freeing only. The 

callback functions allocateMemory and 

freeMemory given in fmiInstantiateSlave 

are ignored. 

  

 

All flags are optional. The flags have the following default values. 

 boolean: false 

 unsignedInt: 0 

3.5.2.2. Model description 

The Element Model is based on the type definition fmiCoSimulationModel, which is defined as 

follows. 
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Attribute Name Description 

entryPoint The URI of the model to be executed by the slave simulator. Examples of 

URIs are: 

 “fmu://resources/model/controller.mdl” refers to a 

model within the FMU archive. 

 “file://c:/model/controller.mdl” refers to a model 

located externally to the FMU archive. 

 “http://myserver:6456/models/controller.mdl” refers to 

a model accessible via a web server. 

 

manualStart Indicates whether the model should be manually loaded and started by the 

user on the slave simulator. By providing this flag, the master tool can 

choose the adequate start sequence on the master side. By default, this 

flag is set to false. 

 

type A mime type that indicates the needed simulator and FMI wrapper for a 

simulator that needs to be started to instantiate an FMI Component. 

 

In some cases, several model files may be transported, e.g. calibration files. In a tool coupling scenario, 

the master tool may need to know, which model needs to be opened to get the top level system. 

Element Model contains an optional sequence of File elements. Each File element is used to 

represent an additional file required by the slave simulator. 

Attribute Name Description 

file The URI of a file needed by the slave simulator to execute the native 

model. An example of file URI entry is 

“fmu://resources/model/myReferencedModel.mdl” that refers to a 

model within the FMU archive. 

 

 

 

 

file:///P:/model/controller.mdl
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4. Model Distribution  

The major part of this section is directly taken from the specification document FMI for Model Exchange, 

as FMI for Co-Simulation builds upon concepts of the previous. Additional remarks will point out, where 

changes were made specifically for the co-simulation case. 

An FMU description consists of several files. An FMU may be distributed in textual and/or in binary 

format. All relevant files are stored in a zip-file with a pre-defined structure. The name of the zip-file must 

be identical to the “modelIdentifier” stored as xml-attribute in the Model Description File and used as 

defined symbol MODEL_IDENTIFIER with header file fmiFunctions.h. The extension of the zip-file 

must be “.fmu”, e.g., “HybridVehicle.fmu”. The compression method used for the zip -file must be “deflate” 

(most free tools, e.g. zlib, offer only the common compression method "deflate").  

Every FMU is distributed by its own zip-file. This zip-file has the following structure:  

// Structure of zip-file of an FMU  

modelDescription.xml  // Description of model (required file)  

model.png  // Optional image file of model icon  

documentation  // Optional directory containing the model documentation  

 _main.html  // Entry point of the documentation  

 <other documentation files>  

sources  // Optional directory containing all C-sources  

  // all needed C-sources and C-header files to compile and link the model  

  // with exception of: fmiPlatformTypes.h and fmiFunctions.h  

binaries  // Optional directory containing the binaries  

 win32  // Optional binaries for 32-bit Windows  

  <modelIdentifier>.dll  // DLL of the model interface implementation  

  // and may contain shared objects (e.g. DLLs) <modelIdentifier>.dll depends on. 

  // Optional object Libraries for a particular compiler. 

  VisualStudio8  // Binaries for 32-bit Windows generated with  

   // Microsoft Visual Studio 8 (2005)  

  <modelIdentifier>.lib  // Binary libraries  

  gcc3.1  // Binaries for gcc 3.1  

    ...  

 win64  // Optional binaries for 64-bit Windows  

   ...  

 linux32  // Optional binaries for 32-bit Linux  

   ...  

 linux64  // Optional binaries for 64-bit Linux  

   ...  

resources  // Optional resources needed by the model  

 < data in model specific files which will be read during initialization > 

  

The FMU must be distributed with at least one implementation, i.e., either sources or one of the binaries 

for a particular machine1. It is also possible to provide the sources and binaries for different target 

machines altogether in one zip-file. The names “win32”, “win64”, “linux32”, “linux64” are standardized, as 

well as the names “VisualStudioX” and “gccX” that define the compiler with which the binary has been 

generated. Further names can be introduced by vendors. Typical scenarios are to provide binaries only 

for one machine type (e.g. on the machine where the target simulator is running and for which licenses 

of run-time libraries are available) or to provide only sources (e.g. for translation and download for a 

particular micro-processor). If run-time libraries cannot be shipped due to licensing, special handling is 

needed, e.g., by providing the run-time libraries at appropriate places by the receiver.  

                                                      

1 Note that the implementation can be either according to FMI for Model Exchange or FMI for Co-Simulation. For the second, see 

section 3.5.2 for details.  
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FMI for Co-Simulation provides the means for two kinds of implementation: CoSimulation_Tool and 

CoSimulation_StandAlone. In the first scenario a slave tool specific wrapper dll has to be provided as 

the binary, in the second a compiled or source code version of the model with its solver is stored (see 

section 2.1 for details). 

In directory “resources”, additional data can be provided in model specific formats, typically for tables 

and maps used in the model. This data must be read into the model at  the latest during initialization 

(fmiInitializeSlave). The actual file names in the zip-file to access the data files can either be hard-

coded in the generated model functions, or the file names can be provided as string parameters via the 

fmiSetString function (see Functional Mock-up Interface for Model Exchange MODELISAR (ITEA 2 - 07006) 

January 26, 2010 Page 41 of 56).  

In the case of a co-simulation implementation of CoSimulation_Tool type, the “resources“ directory can 

contain the model source file in the tool specific file format. 

Note that the header files fmiPlatformTypes.h and fmiFunctions.h are not included in the FMU 

due to the following reasons:  

fmiPlatformTypes.h makes no sense in the “sources” directory, because if sources are provided, 

then the target simulator defines this header file and not the FMU. This header file is not included in the 

“binaries” directory, because it is implicitly defined by the platform directory (e.g. win32 for 32 -bit 

machine or linux64 for 64-bit machine). Furthermore, the version that was used to construct the FMU can 

also be inquired via function fmiGetTypesPlatform().  

fmiFunctions.h is not needed in the “sources” directory, because it is implicitly defined by attribute 

fmiVersion in file modelDescription.xml. Furthermore, in order that the C-compiler can check for 

consistent function arguments, the header file from the target simulator should be used when compiling 

the C-sources. It would therefore be counter productive (unsafe), if this header file would be present. 

This header file is not included in the “binaries” directory, since this header file was already utilized to 

build the target simulator executable. Via attribute fmiVersion in file modelDescription.xml or via 

function call fmiGetVersion() the version number of this header file used to construct the FMU can be 

deduced.  
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Appendix A Contributors 

A.1 Version 1.0 

The Functional Mock-up Interface subproject inside MODELISAR was initiated and organized by  
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MODELISAR ITEA2 project, organized by the WP200 work package leader Dietmar Neumerkel 

(Daimler). FMI for Co-Simulation was developed in three subgroups: “Solver Coupling” headed by Martin 

Arnold (University Halle) and Torsten Blochwitz (ITI), “Tool Coupling” headed by Jörg-Volker Peetz 

(Fraunhofer SCAI), and “Control Logic” headed by Manuel Monteiro (Atego) . The essential part of the 
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Jörg-Volker Peetz, Fraunhofer SCAI, St. Augustin, Germany 

Susann Wolf, Fraunhofer IIS EAS, Dresden, Germany 
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Constanze Bausch, Atego Systems GmbH, Wolfsburg, Germany 

Torsten Blochwitz, ITI GmbH, Dresden, Germany 

Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany 
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Thomas Neidhold, ITI GmbH, Dresden, Germany 
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Appendix B Features for Future Versions 

This appending has been removed. Future releases are now available. 
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Appendix C Further Examples for Simulator Coupling 

In the following, two further examples demonstrating the coupling of three simulators are given in a mix 

of pseudo-code and “C”. 

C.1 Example 1: Parallel simulation and input/output of different kinds 

The three slaves are connected in the following way: 

 

Figure 17: Connection graph of the slaves of example 1  

Simulator s[0] has one continuous real output yr[0], simulator s[1] has one continuous real output yr[0] 

and one integer output yi[0], and simulator s[2] has two real inputs ur[0] , ur[1] and one integer input ui[0]. 

Simulators s[0] and s[1] have the same priority and there does not exist a cycle, so that both simulators 

can work in parallel. 

C.2 Example 2: Cycle (feedback) 

The three slaves are connected in the following way: 

s[0] 

s[1] 

s[2] 

yr[0] 

yi[0] 

ur[0] 

ui[0] 

ur[1] yr[0] 
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Figure 18: Connection graph of the slaves of example 2  

Simulator s[0] has one continuous real input ur[0] and one continuous real output yr [0], simulator s[1] 

has one continuous real input ur[0] and two continuous real outputs yr[0] and yr[1], and simulator s[2] 

has one real inputs ur[0]. Simulators s[0] and s[1] have the same priority but this time a cycle exists, so 

that both simulators cannot work in parallel. 

C.3 Pseudo Code for both examples 

The code demonstrates a more elaborate master algorithm than shown in section 2.2.5. 

 Constant communication step size. 

 Repeating of communication steps / iteration. 

 Parallelization / multiple threads 

The error handling is again implemented in a very rudimentary way.  

 

//////////////////////// 

// Initialization sub-phase 

 

// Graph structure (taken from configuration file) 

// Number of slaves 

nsim = 3; 

// Priority of slaves 0...nsim-1 

priority[0] = 0; 

priority[1] = 0; 

priority[2] = 1; 

// At priority i do cycles exist? yes: cycles[i] = 1, no: cycles [i] = 0 

cycles[1] = 0; 

#ifdef Example1 

cycles[0] = 0; 

#else 

cycles[0] = 1; 

#endif 

// Read the ModelDescription XML files of the FMUs 

// Instantiate slaves 

s[0] 

s[1] s[2] 

yr[0] 

yr[0] 

ur[0] 

ur[0] 

ur[0] yr[1] 
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for (i = 0; i < nsim; ++i) { 

 s[i]->component = fmiInstantiateSlave("Instance_i", "", "FMU_i.dll", 

  "",...); 

 if (s[i]->component == NULL) 

  // error 

} 

// tStart needs to be between startTime and stopTime from the XML-file 

tStart = 0; 

// tStop needs to be between startTime and stopTime from the XML-file 

tStop = 10; 

// Communication step size 

h = 0.01; 

// Number of inputs and outputs of slave s[i] (taken from XML-file), 

// n[u|y][r|i|b|s] is the number of components of [real|integer|boolean|string] 

// [input|output] array [u|y][r|i|b|s] 

#ifdef Example1 

s[0]->nyr = 1; 

s[1]->nyr = 1; 

s[1]->nyi = 1; 

s[2]->nur = 2; 

s[2]->nui = 1; 

#else 

s[0]->nur = 1; 

s[0]->nyr = 1; 

s[1]->nur = 1; 

s[1]->nyr = 2; 

s[2]->nur = 1; 

#endif 

 

// Initialize slaves 

for (i = 0; i < nsim; ++i) { 

 status = fmiInitializeSlave(s[i]->component, tStart, fmiTrue, tStop); 

 if (status != fmiOK) 

  // error 

} 

 

//////////////////// 

// Simulation sub-phase 

 

// Current master time 

tc = tStart; 

 

while ((tc < tStop) && (status == fmiOK)) { 

 // Zero communication step size at first step and for event iteration 

 if (firstStep || event) 

  hStep = 0; 

 else 

  hStep = communicationStepSize; 

 // Call slaves regarding priority 

 for (prior = 0; prior < maxPriority; ++prior) { 

  if (cycles[prior] == 0) { // no cycle, parallel execution of slaves 

   // Call slaves of priority prior 

   for (i = 0; i < nsim; ++i) 

    if (priority[i] == prior) { 

     // Open thread 

     // Set inputs for slaves of priority prior 

     fmiSetReal(s[i]->component, ..., s[i]->nur, 

      s[i]->ur); 

     fmiSetInteger(s[i]->component, ..., s[i]->nui, 

      s[i]->ui); 

     status = fmiDoStep(s[i]->component, tc, hStep, 
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      fmiTrue); 

     if (status == fmiError || status == fmiFatal) 

      // error 

     // Retrieve outputs for slaves of priority prior 

     fmiGetReal(s[i]->component, ..., s[i]->nyr, 

      s[i]->yr); 

     fmiGetInteger(s[i]->component, ..., s[i]->nyi, 

      s[i]->yi); 

     // Close thread 

    } 

  } else { // cycle, serial execution of slaves, iteration 

   itSteps = 0; 

   newStep = fmiTrue; 

   // Iteration 

   do { 

    ++itSteps; 

    // Backup of values exchanged between slaves for error 

    // check 

    oldValues = values; 

    // Call slaves of priority prior 

    for (i = 0; i < nsim; ++i) 

     if (priority[i] == prior) { 

      // Set inputs for slaves of priority prior 

      fmiSetReal(s[i]->component, ..., s[i]->nur, 

       s[i]->ur); 

      fmiSetInteger(s[i]->component, ..., 

       s[i]->nui, s[i]->ui); 

      status = fmiDoStep(s[i]->component, tc, 

       hStep, newStep); 

      if (status==fmiError || status==fmiFatal) 

       // error 

      // Get outputs for slaves of priority prior 

      fmiGetReal(s[i]->component, ..., s[i]->nyr, 

       s[i]->yr); 

      fmiGetInteger(s[i]->component, ..., 

       s[i]->nyi, s[i]->yi); 

     } 

    newStep = fmiFalse; 

    // Check error between old and new values of iteration 

    err = errorCheck(values, oldValues); 

   } while (err > 0 && itSteps < maxItSteps); 

  } 

 } 

 //increment current master time 

 tc += hStep; 

} 
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////////////////////// 

// Shutdown sub-phase 

if (status == fmiOK) { 

 // Terminate slaves 

 for (i = 0; i < nsim; ++i) 

  fmiTerminateSlave(s[i]->component); 

 // Reset slaves 

 for (i = 0; i < nsim; ++i) 

  fmiResetSlave(s[i]->component); 

} 

 

if (status != fmiFatal) 

 // Cleanup slaves 

 for (i = 0; i < nsim; ++i) 

  fmiFreeSlaveInstance(s[i]->component); 
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Appendix D Higher Order Signal Extrapolation 

Within each communication step 1 ii tctc  the slave inputs )(tu  are approximated using function 

values at itct   and possibly up to 1r  more previous communication points 

riii tcttcttct   121  ..., , ,   for some 1r . In a serial implementation, it is even possible that some 

slaves may use function values )(tu  at the new communication point 1 itct . 

In most co-simulation algorithms, polynomial approximations of slave inputs are used:  

 Constant (“zero order”) extrapolation based on data at  itct   : 

                    )(:)()( 0,E itcututu   ,  ( 1 ii tcttc ) , 

 Linear (“first order”) extrapolation based on data at 1 itct  and itct   : 

        ))(()(:)()( 1,E iii tcttcutcututu     with  

1

1)()(
:)(










ii

ii
i

tctc

tcutcu
tcu   ,  ( 1 ii tcttc ) , 

 Linear (“first order”) interpolation based on data at itct   and 1 itct  : 

       ))(()(:)()( 1,I iii tcttcutcututu     with  
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 Quadratic (“second order”) extrapolation based on data at  2 itct , 1 itct  and itct   : 
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 Quadratic (“second order”) interpolation based on data at 1 itct , itct   and 1 itct  : 
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and so on. In all these examples, a Nordsieck like representation of the interpolating and extrapolating 

polynomials was used that expresses the approximation of )(tu  in terms of powers of )( itct   with 

coefficients being defined by difference quotients of u . Note, that the denominators of these difference 

quotients may be further simplified in the case of equidistant communication points  

... , , , , 112  iiii tctctctc  with fixed communication step size hc : 

...       , 
22

       ,  211
2111 hc

tctctctc
hctctctctctctc iiii

iiiiii 





 
  . 

The Nordsieck like representation of the slave inputs is favourable since it abstracts from algorithmic 

details (like data interpolation vs. data extrapolation) and requires at a communication point  
itct   just 

the transfer of the derivative vector 








)(),...,(),(),( ik

k

iii tc
dt

ud
tcutcutcu   from master to slave to define 

the extrapolated or interpolated slave inputs )(tu  in communication step 
1 ii tctc . For polynomial 

slave inputs )(tu , the length 1k  of this derivative vector determines the degree k  of the polynomial 

and the components of the derivative vector contain in increasing order the coefficients of  !)( jtct j

i  

for kj ,...,1,0 : 





k

j

j

iij

j

tcttc
dt

ud

j
tu

0

)( )( 
!

1
 )( .  

The Nordsieck representation of polynomials is not restricted to classical interpolation polynomials but 

may be used as well for more sophisticated co-simulation techniques like the extrapolated interpolation 

(S. Dronka, J. Rauh: Co-Simulation-Interface for User-Force-Elements. – SIMPACK User Meeting 2006, 

http://www.simpack.com/uploads/media/um06_dc_research-dronka_05.pdf) or interpolated extrapolation 

of slave inputs. Also the extension to interpolation by rational functions and related approaches is 

straightforward. 

Practical experience and recent theoretical investigations (M. Arnold: Stability of sequential modular time 

integration methods for coupled multibody system models. - Journal of Computational and Nonlinear 

Dynamics, 5(2010)031003, doi:10.1115/1.4001389) show that higher order signal extrapolation 

increases the risk of numerical instability in co-simulation. Therefore, polynomial signal extrapolation is 

typically restricted to constant, linear or quadratic polynomials. In principle, however, interpolation 

polynomials of arbitrary degree could be computed and evaluated very efficiently using their Newton 

representation that may be found in any textbook on numerical mathematics. The coefficients 

... ),( ),( ii tcutcu   of the Nordsieck representation are obtained by Taylor expansion of the interpolation 

polynomial at 
itct  .  
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Appendix E Communication Step size Control 

In contrast to classical (mono-disciplinary) simulation techniques in system dynamics, state-of-the-art 

master algorithms in co-simulation are even today based on constant communication step sizes hc  and 

do not provide any automatic error control. Constant communication step sizes may restrict strongly the 

efficiency of co-simulation algorithms if the solution behavior changes considerably during time 

integration. Furthermore, the selection of an “optimal” constant communica tion step size hc  requires 

much practical experience or time-consuming numerical tests. 

Therefore, error control and the adaptive selection of (variable) communication step  sizes 
ihc  may 

contribute to more reliable and more efficient master algorithms. The basic ideas of classical step  size 

control in time integration are described in great detail in the literature on numerical solution of ordinary 

differential equations (U. Ascher, L.R. Petzold: Computer Methods for Ordinary Differential Equations 

and Differential-Algebraic Equations. - SIAM Philadelphia, 1998). The practical implementation in the 

explicit Runge-Kutta code DOPRI5 (http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f ) may be 

considered as an advanced reference implementation in classical ODE time integration.  

Step size control is based on the component based comparison of an error estimate EST  with user 

defined bounds ATOL , RTOL  in each time step: 

 



















m

j jjj

j

ym 1

2

 RTOLATOL

EST
  

1
 :err . 

The error indicator err  shows if the (estimated) error EST  is below the given error bounds ATOL , 

RTOL  (resulting in 1err  ). If 1err  , then the (estimated) error is too large and the current step 

should be repeated with smaller step size. 

The crucial part of this error control strategy is the efficient evaluation of a reliable error estimate EST  

that may be obtained comparing two numerical solutions of different accuracy. In ODE and DAE time 

integration, the nominal numerical solution in a time step hTT   is compared 

 with the predictor of a linear multistep method in predictor-corrector form, 

 with an embedded Runge-Kutta solution of different order in the case of Runge-Kutta methods or  

 with the result of two time steps of reduced step size ( 2/hTT   and hThT  2/ , 

Richardson extrapolation). 

The details of an efficient implementation are sophisticated, see the above given references. The use of 

Richardson extrapolation for communication step size control in co-simulation is discussed in (R. Kübler: 

Modulare Modellierung und Simulation mechatronischer Systeme . Fortschritt-Berichte VDI Reihe 20, Nr. 

327. VDI-Verlag Düsseldorf, 2000). 

In the context of co-simulation, vector EST  should estimate in each communication step 
1 ii tctc  all 

errors in the slave outputs )( 1itcy  that result from the use of approximated slave inputs 

http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f
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)(),( 1 ii tcttctu . Then, the error indicator err  shows if the communication step size 
ihc was 

sufficiently small to meet some user defined error bounds ATOL , RTOL  or not. Furthermore, the ratio 

between the error indicator err  and its optimal value 1.0 may be used to define a posteriori an “optimal” 

communication step size opthc  : 

1

1

opt

1
  :













k

i
err

hchc   

with a safety factor ]9.0,8.0[  and k  denoting the approximation order of the signal extrapolation for 

slave inputs )(tu . Note, that opthc  is always smaller than the current communication step size 
ihc  if the 

error estimate EST  exceeds the given tolerances ( 1err  ). 

If all slaves in a co-simulation environment support variable communication step sizes 
ihc  (capability 

flag canHandleVariableCommunicationStepSize), then the master algorithm may use this optimal 

communication step size opthc  for the next communication step 
1121 :   iiii hctctctc  with 

opt1 : hchci  . (At least) a warning message should be generated whenever the error indicator  err  

exceeds its critical value 1.0. 

In a really error controlled master algorithm, however, a communication step resulting in an error 

indicator 1err   has to be repeated with smaller communication step size (“rejected” communication 

steps). FMI for Co-Simulation supports such step rejections by repeated calls of fmiDoStep(…) with one 

and the same input parameter currentCommunicationPoint and different input parameters 

communicationStepSize. To keep the discussion in this appendix compact the parameters 

currentCommunicationPoint and communicationStepSize are abbreviated by 
M

curt and curh , 

respectively. I.e., fmiDoStep(…) is called to perform one communication step cur

M

cur

M

cur htt  . 

In a practical implementation of advanced error controlled master algorithms, all slaves of the co-

simulation environment have to support repeated calls with one and the same current communication 

time 
M

curt  and different communication step sizes 
curh  (capability flag canRejectSteps). It is mandatory 

for a successful co-simulation with communication step size control that all slaves in the co-simulation 

environment guarantee that repeated calls of fmiDoStep(…) with identical input data (i.e. with identical 

M

curt  and 
curh  and identical slave inputs )(tu ) result in exactly identical output data. Therefore, the 

capability to discard and to repeat communication steps (capability flag canRejectSteps) requires 

substantial modifications and extensions of existing simulation software that is typically designed to 

solve model equations and to store simulation data going step by step forward in time from initial time  

startt  to end time stopt  . 
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With advanced error controlled master algorithms there are two fundamentally different types of 

communication steps cur

M

cur

M

cur htt  : 

 Accepted communication steps: All slaves perform successfully the communication step and generate 

simulation data that should be saved to file. At cur

M

cur ht   the error estimate EST  and the error 

indicator err  are evaluated resulting in 1err  . Then, the current communication point 
M

curt  is 

updated to cur

M

cur ht   and co-simulation proceeds with the next communication step and “optimal” 

communication step size opthc , input parameter newStep of fmiDoStep(…) is set to fmiTrue. 

 Rejected (or “discarded”) communication steps: All slaves perform the communication step but do not 

generate any simulation data for file output. If all slaves complete successfully the full communication 

step cur

M

cur

M

cur htt   then the error estimate EST  and the error indicator err  are evaluated but the error 

indicator exceeds its critical value: 1err  . The communication step has to be repeated with the same 

current communication point 
M

curt  as before but reduced communication step size optcur : hch 
 . The 

communication step has to be repeated as well if at least one slave fails to complete the communication 

step successfully. Again, the current communication point 
M

curt  is left unchanged and the communication 

step size curh  is reduced appropriately. 

A technically challenging problem in the design and implementation of error controlled master algorithms 

is caused by the fact that during a communication step cur

M

cur

M

cur htt  , i.e. during a call to 

fmiDoStep(…), neither the master nor any slave know if the communication step will finally be accepted 

or not since this decision is based on the output of all slaves. The output of simulation data to file, 

updates of model parameters etc. have to be postponed until all slaves have completed the current call 

of fmiDoStep(…) and the error criterion err  is evaluated. In a practical implementation, the file output of 

simulation data during the communication step may be redirected to a data buffer. If the communication 

step is accepted, the buffered data are written to file, otherwise the data buffer is cl eared.  

In nested co-simulation environments with nested communication step size control, the situation gets 

even more complicated since the output of simulation data has to be postponed until all nested master 

algorithms accept the (nested) communication steps. In FMI for Co-Simulation, the information that the 

previous communication step cur

M

cur

M

cur htt   was accepted may be given to the slaves setting 

parameter newStep to fmiTrue in the next call to fmiDoStep(…). I.e., if a slave is called by function 

fmiDoStep(…) with input argument newStep set to fmiTrue, then the previous call of this slave by 

function fmiDoStep(…) resulted in an accepted communication step and data buffers should be written 

to file, model parameters should be updated (if applicable) etc. before starting the computation of the 

current communication step. This implementation scheme is applicable as well at the end time  stopt  

performing a call of fmiDoStep(…) with stop

M

cur tt   and 0cur h  and newStep = fmiTrue before 

terminating the co-simulation. 
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The specific problem in nested co-simulation environments is the fact that an accepted communication 

step of the inner co-simulation environment may belong to a (larger) rejected communication step of the 

outer co-simulation environment. Currently, all practical experience with communication step size control 

in co-simulation is restricted to master algorithms generating non-decreasing sequences 
M

curt . More 

sophisticated algorithms for nested master algorithms are still under development.  
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Glossary 

This glossary is a subset of (MODELISAR Glossary, 2009) with some extensions specific to this 

document. 

Term Description 

algorithm A formal recipe for solving a specific type of problem.  

application 

programming 

interface (API) 

A set of functions, procedures, methods or classes together with type 

conventions/declarations (e.g., C-header files) that an operating system, library or 

service provides to support requests made by computer programs.  

communication points Time grid for data exchange between master and slaves in a co-simulation 

environment (also known as “sampling points” or “synchronization points”). 

communication step 

size 

Distance between two subsequent communication points (also known as “sampling 

rate” or “macro step size”). 

co-simulation Coupling (i.e., dynamic mutually exchange and utilization of intermediate results) of 

several simulation programs including their numerical solvers in order to simulate a 

system consisting of several subsystems. 

co-simulation 

interface 

The set of interfaces within the MODELISAR framework to perform a co-simulation. 

co-simulation 

platform 

Software, which obtains means for coupling several simulation programs for co-

simulation. 

functional mock-up 

environment (FMUE) 

In the general scheme of a simulation program FMUE is the part, which is responsible 

for all control activities and computations of the simulation, including data exchange 

between coupled simulation programs. It does include neither a user interface nor a 

logic for a user interaction. 

functional mock-up 

interface for co-

simulation 

One of the MODELISAR functional mock-up interfaces.  

It connects the master solver component with one or more slave solvers. 

functional mock-up 

interface for model 

exchange  

One of the MODELISAR functional mock-up interfaces. It consists of the model 

description interface and the model execution interface. 

It connects the external model component with the solver component. 

functional mock-up 

trust center (FMTC) 

As defined in the MODELISAR framework, FMTC describes a closed system 

providing model and simulation access to authenticated users and functional mock-up 

authorities through dedicated cryptographic interfaces. 

functional mock-up 

unit (FMU) 

A “model class” from which one or more “model instances” can be build for 

simulation. A FMU is stored in one zip-file as defined in section 4 consisting basically 

of one xml file (see section 3) that defines the model variables and a set of C-

functions (see section 2), in source or binary form, to execute the model equations or 

the simulator slave. In case of tool exection, additionally, the original simulator is 

required to perform the co-simulation (compare section 3.5.2). 

gateway A link between two computer programs allowing them to share information and 

bypass certain protocols on a host computer.  

integration algorithm The numerical algorithm to solve differential equations. 

integrator A software component, which implements an integration algorithm. 

interface An abstraction of a software component that describes its behavior without dealing 

with the internal implementation. Software components communicate with each other 

via interfaces.  
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master/slave A method of communication, where one device or process has unidirectional control 

over one or more other devices. Once a master/slave relationship between devices or 

processes is established, the direction of control is always from the master to the 

slaves. In some systems a master is elected from a group of eligible devices, with the 

other devices acting in the role of slaves.  

model A model is a mathematical or logical representation of a system of entities, 

phenomena, or processes. Basically a model is a simplified abstract view of the 

complex reality.  

It can be used to compute its expected behavior under specified conditions.  

model description file The model description file is an XML-file, which supplies a description of all properties 

of a model (e.g. input/output variables). 

model description 

interface 

An interface description to write or retrieve information from the model description file. 

model execution 

interface [from model 

interface working 

group] 

An interface description to access the equations of a dynamic system from an 

external program. 

numerical solver see solver 

output points Tool internal time grid for saving output data to file (in some tools also known as 

“communication points” – but this term is used in a different way in FMI for Co-

Simulation, see above). 

output step size Distance between two subsequent output points. 

parameter A quantity within a model, which remains constant during simulation, but may be 

changed between simulations.  

Examples are a mass, stiffness, etc. 

slave see master/slave 

simulation Compute the behavior of one or several models under specified conditions.  

(see also co-simulation) 

simulation model see model 

simulation program Software to develop and/or solve simulation models. The software includes a solver, 

may include a user interface and methods for post processing (see also: simulation 

tool, simulation environment). 

Examples of simulation programs are: Amesim, Dymola, Simpack, SimulationX, 

Simulink. 

simulation tool see simulation program 

simulator A simulator can include one or more simulation programs, which solve a common 

simulation task. 

solver Software component, which includes algorithms to solve models, e.g. integration 

algorithms and event handling methods. 

user interface The part of the simulation program that gives the user control over the simulation and 

allows watching results. 

 

 


