

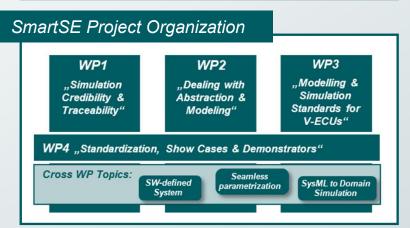
prostep SmartSE

Traceability and Support of Simulation & Modeling using SSP-Traceability Layered Standard

September 2025

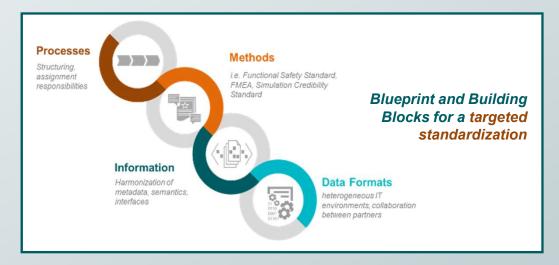
Hans-Martin Heinkel, Robert Bosch GmbH Antoine Vandamme, Robert Bosch GmbH Peter Lobner, eXXcellent solutions Dag Brück, Dassault Systèmes Pierre Mai, PMSF

- Overview prostep SmartSE project
- Building Blocks GlueParticle SmartSE
- Credible Modeling using SSP-Traceability Layered Standard
- Example with Demo
- Status of standardisation of metadata for modeling & simulation (M&S)
- Usage of metadata and SSP-traceability for traceability and reuse

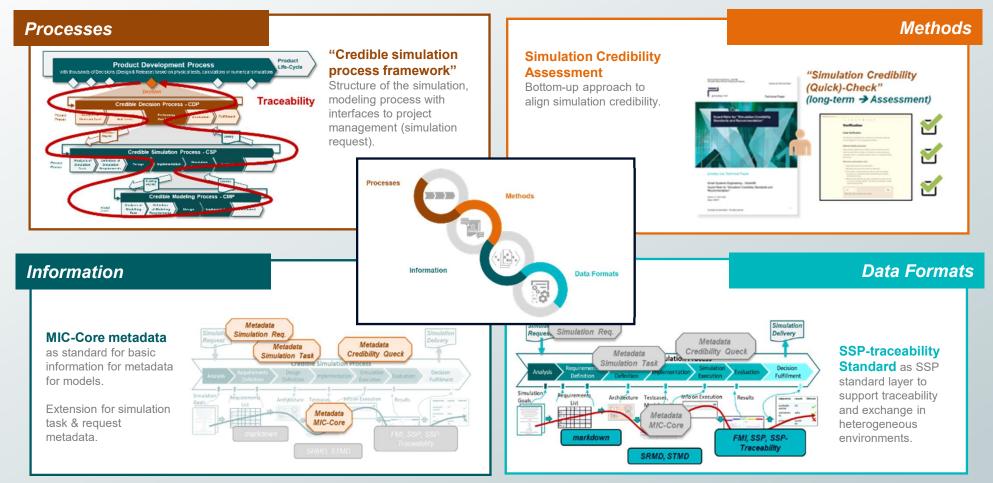

Summary

Overview SmartSE Project

Project phase 6: Mission and Work Packages



Mission Phase 6 (2025-2027)

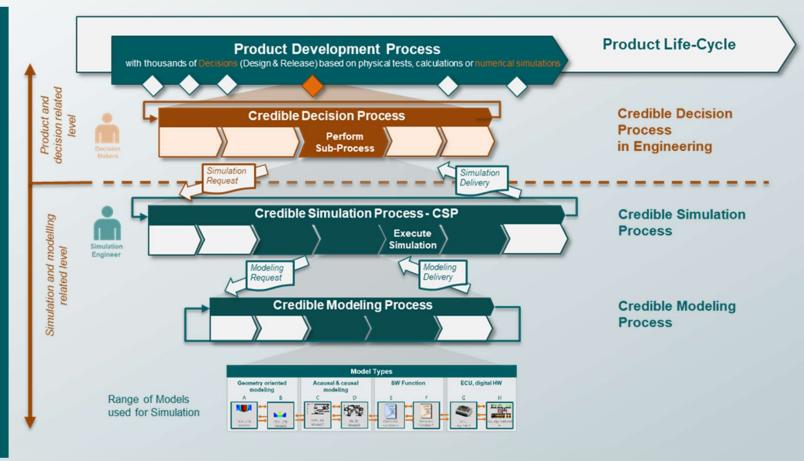

Enabling collaborative development and validation of complex products by simulation in networks and along multi-tier supply chains.

The initiation, development and industrialization of standards in the field of model-based and cross-company development is an important part of the work of the SmartSE project group.

Credibility and Traceability of Simulation as an Enabler for Virtualization

Process hierarchy with clear information structurina

- · Sub-processes can be integrated into specific company processes
- · Clear assignment of responsibilities

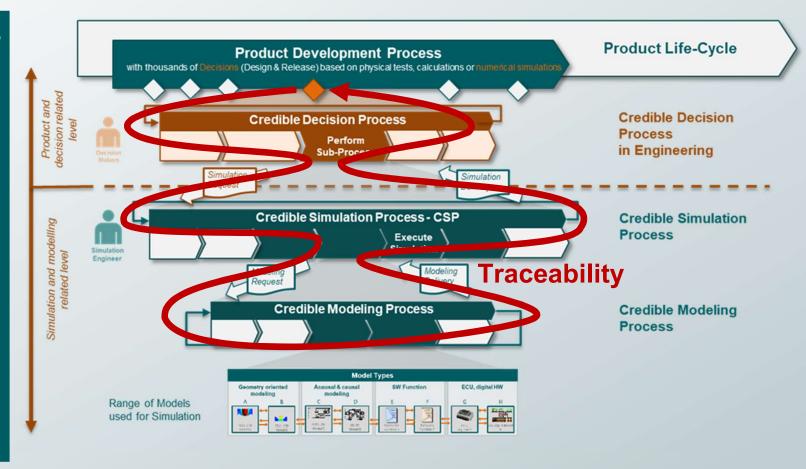

Meetings for alignment "Big Picture and core terms"

as basis for domain specific credibility standards.

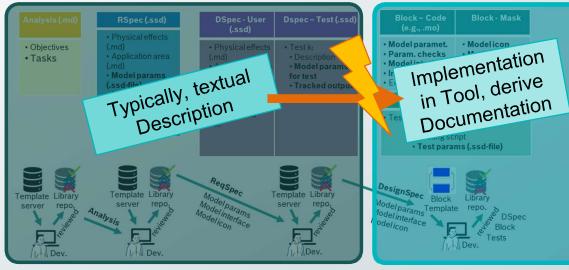
Credibility and Traceability of Simulation as an Enabler for Virtualization

Process hierarchy with clear information structurina

- · Sub-processes can be integrated into specific company processes
- · Clear assignment of responsibilities


Meetings for alignment "Big Picture and core terms"

as basis for domain specific credibility standards.



Traceability and Support of Simulation & Modeling using SSP **Modeling Process (Status quo)**

7

· Often no single source of truth

No Traceability => No Credibility

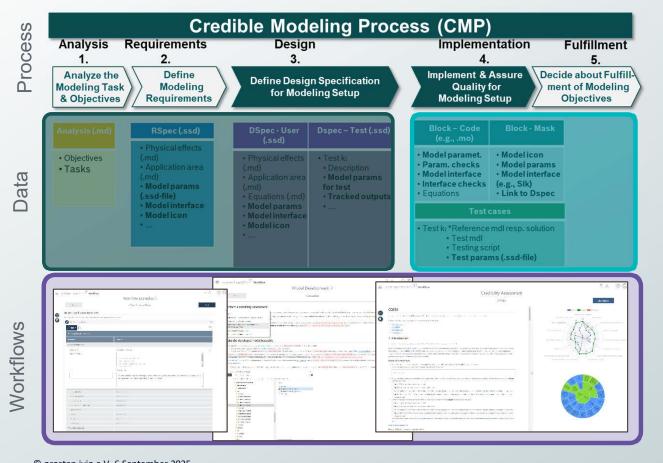
2.

Design

Analysis

© prostep ivip e.V. 6 September 2025

Requirements


Weak Points

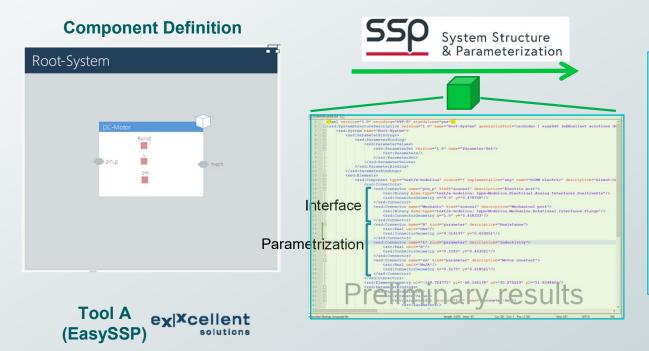
- Mismatch of interface, parameter specification to implementation in simulation tool
- Copy / Paste errors
- Inconsistent versions, content of requirement & design specification and documentation
- High review efforts

Implementation

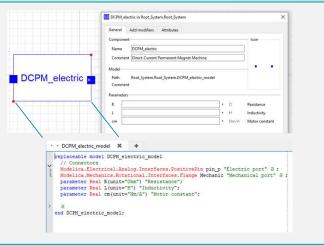
Approach for Credible Modeling

Three level approach

- Process
- Data
- Workflows

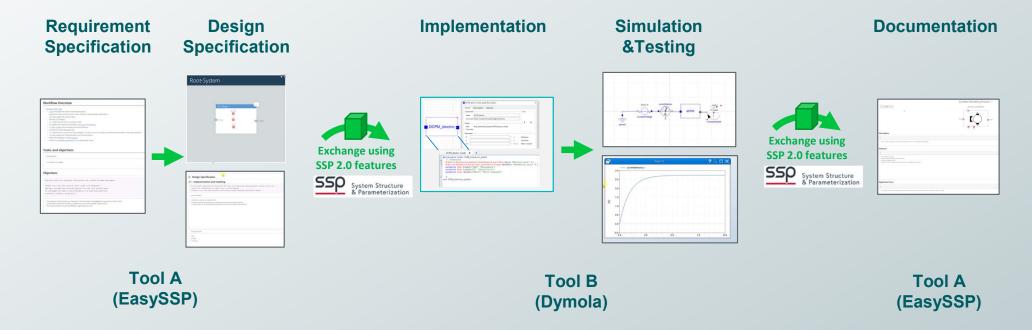

Benefits

- Well-defined process to convey information in a structured manner
- Use of SSP for efficient model exchange
- Use of SSP Traceability to store and exchange process information in a standardized form
- Easy to use via workflows based on common formats (Markdown, YAML)
- Automatic process & model documentation
- Data exchange via SSP package

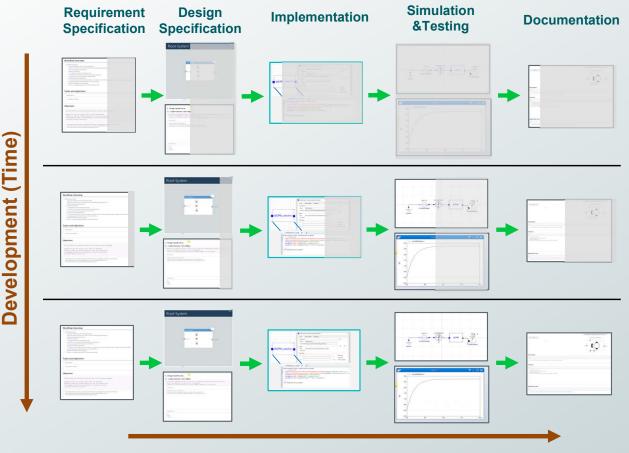

Open Standards for Efficient Data Exchange

Use of SSP 2.0, SSP Traceability and Modelica enables efficient data exchange and development, e.g. via automatic interface and parameter propagation (investigations with easySSP & Dymola, prototypical release E.2024)

Component Implementation


Tool B (Dymola)

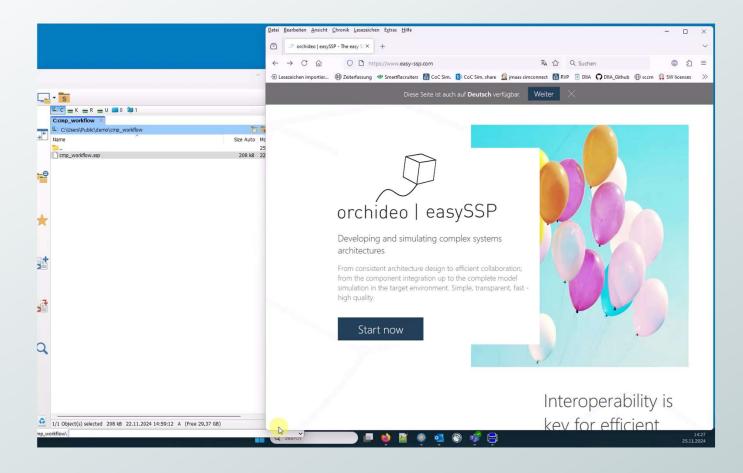
Open Standards for Efficient Data Exchange



Use of SSP 2.0, SSP Traceability and Modelica enables efficient data exchange and development, e.g. via automatic interface and parameter propagation (investigations with easySSP & Dymola in progress)

Open Standards for Efficient Data Exchange

Development Process

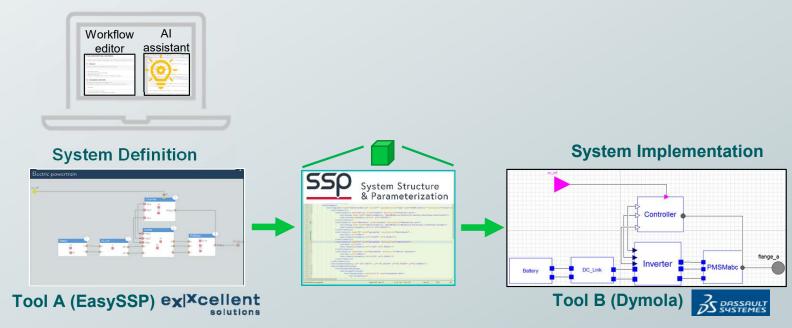

- · It is not a waterfall
- · It is an iterative process over time
- All the process phases gain more information in parallel with feedback
- There is a logical ordering i.e. design specification is based on requirements

These must be supported by tools and standards

Logical order, traceability

Demo of Current Status

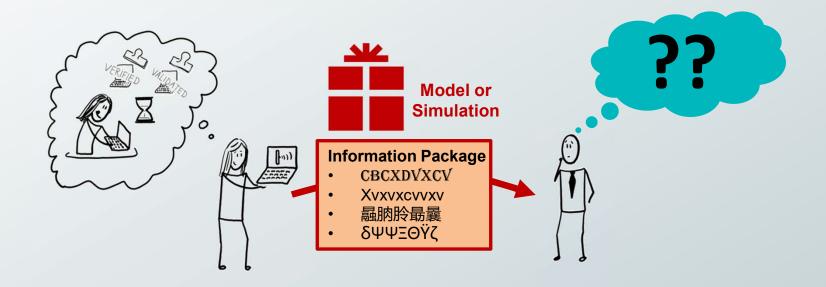
prostep IVIP


Outlook

 Credible Modeling Process (CMP) with credibility assessment

• Al for CMP

• CMP for System



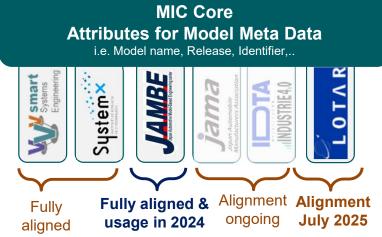
- Overview prostep SmartSE project
- Building Blocks GlueParticle SmartSE
- Credible Modeling using SSP-Traceability Layered Standard
 - Example with Demo
- Status of standardisation of metadata for modeling & simulation
- Usage of metadata and SSP-traceability for traceability and reuse

Summary

Need of Standards for Model & Simulation Meta Data

For the exchange, collaboration, traceability we need standardized information, metadata

Standard for Model Meta Data



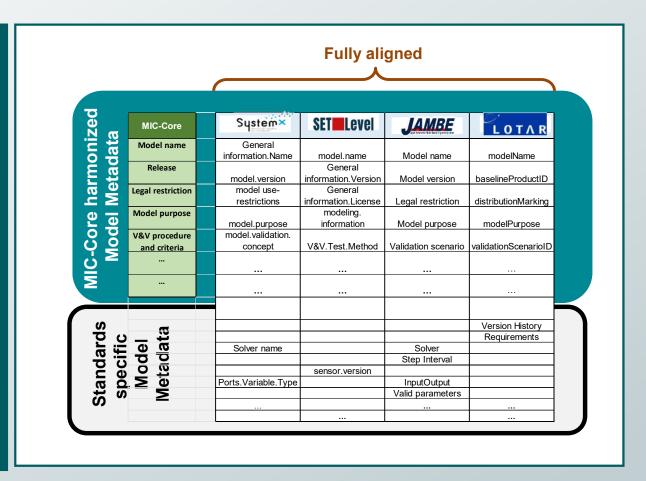
MIC-Core Standard for Model Meta Data "Model Identity Card (MIC)"

The MIC-Core specification is a free standard that defines a set of harmonized model meta data attributes. It is developed by IRT SystemX & prostep SmartSE.

The standards from these organizations are input for alignment

July 2023 Examples of JA

Examples of JAMBE Generic Vehicle Models


No.	Sub system	Functions
Α	Driver	Accelerator/brake opening calculation
B10C	Engine control ECU	Throttle Opening calculation Idla stop command Fud injection cut command Ignition Timing command Starter motor drive command Engine speed calculation
820C	Transmission control FCU	Clutch engagement command Slip RPM calculation CVT ratio calculation
B30C	Alternator control	Target generation voltage calculation
B40C	Brake control ECU	Brake opening calculation
B10P	Engine	Engine torque generation
B12P	Transmission	dutch engagement Reduction (gear ratio)
B21P	Differential gear	Final reduction (gear ratio)
B30P	Alternator	Generation torque generation current calculation
B31P	Starter motor	Motor torque generation Current calculation
B40P	Low voltage battery	Voltage supply according to SOC
B50P	Low-voltage electrical component	Calculation of (equivalent) power consumption of low-voltage electrical equipment
851P	Hrake	Brake torque generation
860P	Tire	Torque to driving force conversion

Standard for Model Meta Data

The MIC Core specification is a free standard that defines a set of harmonized model meta data attributes that meta-data standards can adopt to avoid ambiguity and incompatibility in common attributes across domains and standards.

The focus is on a core set of metadata required for traceability and basic information on whether the model is usable for the intended application

Core Metadata for Simulation Task & Request

SRMD Data Format and MIC Core Standard for Model Metadata

An implementation of the MIC-Core Specification in the SRMD Standard is already available.

> Metadata MIC-Core

Simulation Resource Meta Data (SRMD) format is part of the Modelica SSP-Traceability standard

Now same approach for Metadata for

Metadata Simulation Req.

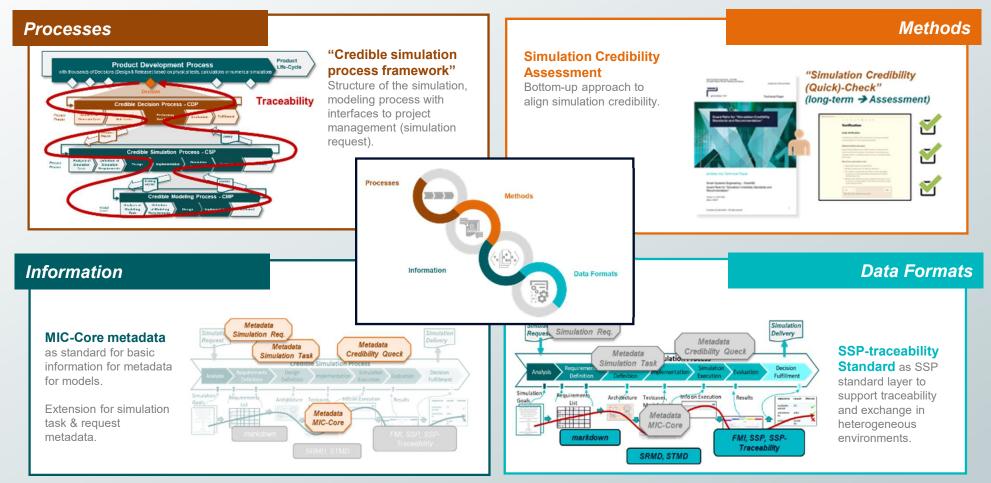
Metadata
Simulation Task

Collection and aligning Metadata

Implementation of MIC-Core in the SRMD metadata format

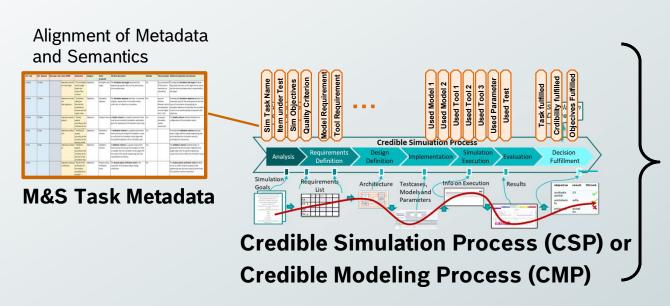
Introduction

In the following, an exemplary implementation of the MIC-Core standard into the SRMD metadata format will be shown. The SRMD (Simulation Resoure Meta Data) metadata format is a subset of the SSP traceability STMD (Simulation Task Meta Data) format. These formats are part of the Modelica Association Project SSP (System Structuring and Parametrization). The SRMD format allows to specify any metadata, attributes in the form of key value pairs. The format description also specifies where this metadata file should be stored in an FMU or SSP (link to SSP traceability).

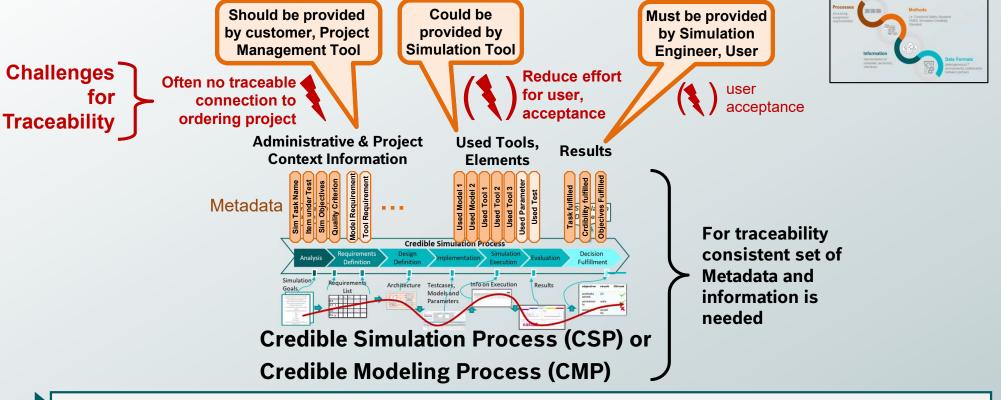

Maping of MIC-Core attributes to the SRMD format

The following table shows the implementation. In the first column the attributes defined in the MIC core are listed. The second column lists the conversion of the attribute names to SRMD. For easier machine processability, dustering via presented terms separated by period is used here. No spaces are used. In column 3 an abbreviated explanation of the attributes is listed

MIC-Core Name	SRMD Mapping	Short Explanation		
Model name	administrative-data.model.name	Human-readable way of referring to the model. Usually short and clear. Not necessarily unique		
Model identifier	administrative-data.model.identifier	Unique identifier for the model.		
Model description	administrative-data.model.description	Human-readable, textual, general overview. Highlights important information about the model.		
Model supplier	administrative-data.model.supplier	The responsible body and, if applicable, organizational unit within the body, that is responsible for supplying the mode		
Model confidentiality level	administrative-data.model.confidentiality-level	Protection level to apply to the model.		
Legal restriction	administrative-data.legal-restriction	Defines the rules governing the distribution and usage of the simulation model, including licensing,		
Release	administrative-data.release	Unique identifier, preferably human-readable (i.e. semantically meaningfull), for the release of a particular simulation model.		
Release date	administrative-data.release.date	Date, and possibly time and timezone, of the release of a simulation model. Must respect ISO 8601.		
Release type	administrative-data.release.type	Relates to the maturity of the model.		


Traceability and Support of Simulation & Modeling using SSP-Traceability Building blocks to support Credibility and Traceability of Simulation & Modeling

Usage of aligned Metadata for M&S Tasks and Requests


Building Blocks for crosscompany simulation-based engineering

One consistent set of Metadata and information

The M&S Metadata together with the CSP gives a structured, standardized set of Metadata for simulation and modeling tasks

Metadata needed for basic Traceability



The M&S Metadata together with the CSP/CMP gives a structured, standardized set of Metadata for simulation and modeling tasks

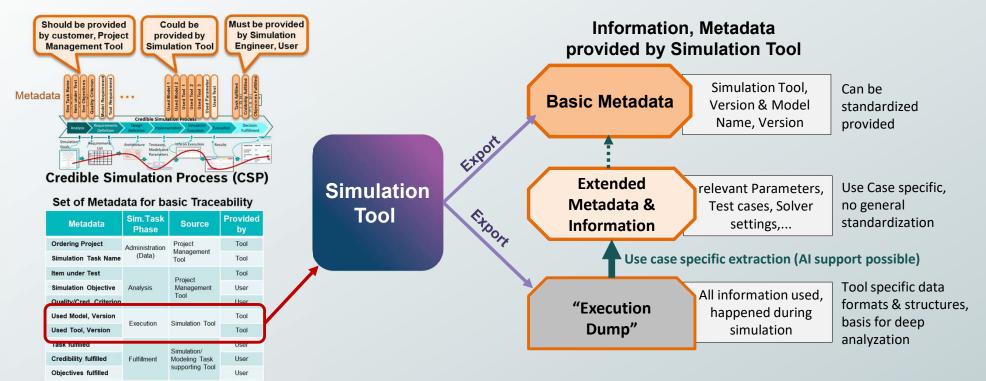
Metadata needed for basic Traceability

Credible Modeling Process (CMP)

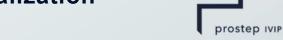
Set of Metadata for basic Traceability

Metadata	Sim.Task Phase	Source	Provided by
Ordering Project	Administration	Project	Tool
Simulation Task Name	(Data)	Management Tool	Tool
Item under Test		Project Management Tool	Tool
Simulation Objective	Analysis		User
Quality/Cred. Criterion			User
Used Model, Version	Execution	Simulation Tool	Tool
Used Tool, Version	Execution	Simulation 1001	Tool
Task fulfilled		Simulation/ Modeling Task supporting Tool	User
Credibility fulfilled	Fulfillment		User
Objectives fulfilled			User

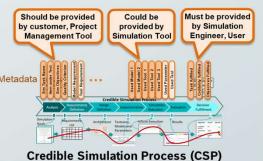
Tools that already or in 2026 will support:


Dymola, easySSP, Model.CONNECT, FMI Bench, IPG CarMaker,...

Minimal set of Metadata that is needed for basic traceability, search and reuse


Can be used as a starting point for implementation of these funcionalities
 Important in this approach: Availability of data and user acceptance

Basic Metadata can be standardized and provided by Simulation Tools Extended Metadata are Usecase specific, only support in generation possible



Metadata needed for basic Traceability

Use cases for basic Traceability

- I am looking for the corresponding simulations for a project
- For which applications was Model Z used?
- In which simulations was a tool used in Version X with models of Version Y
- Which existing simulation settings can possibly be used as a template for a new simulation task?

•

Set of Metadata for basic Traceability

Metadata	Sim.Task Phase	Source	Provided by
Ordering Project	Administration	Project	Tool
Simulation Task Name	(Data)	Management Tool	Tool
Item under Test		Project Management	Tool
Simulation Objective	Analysis		User
Quality/Cred. Criterion		Tool	User
Used Model, Version	Execution	Simulation Tool	Tool
Used Tool, Version	Execution	Simulation 100i	Tool
Task fulfilled		Simulation/ Modeling Task	User
Credibility fulfilled	Fulfillment		User
Objectives fulfilled		supporting Tool	User

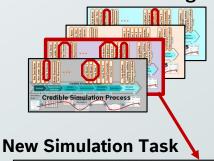
Basic traceability use cases are applications that serve for basic search, preselection, overview, and narrowing.

Usage of Meta Data of Simulation & Modeling Task

Building Blocks for crosscompany simulation-based

engineering

Search


Metadata Sets of **Simulation & Modeling Tasks**

- in which simulation/modeling tasks was element used
- is the same or similar context of use

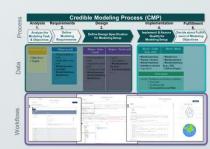
Reuse

Metadata Sets of **Simulation & Modeling Tasks**

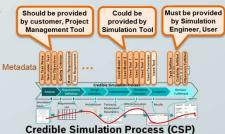
Evaluation of differences, missing aspects

Usage of aligned Building Blocks allows search and supports reuse without further effort and minimal maintenance

Credible Simulation Process


Summary

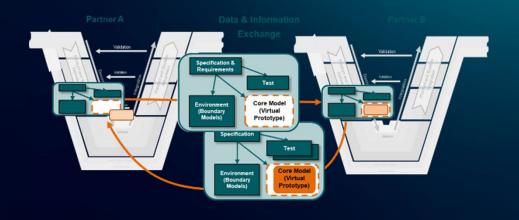
Importance of the alignment of the SmartSE GlueParticle Building Blocks



prostep IVIP

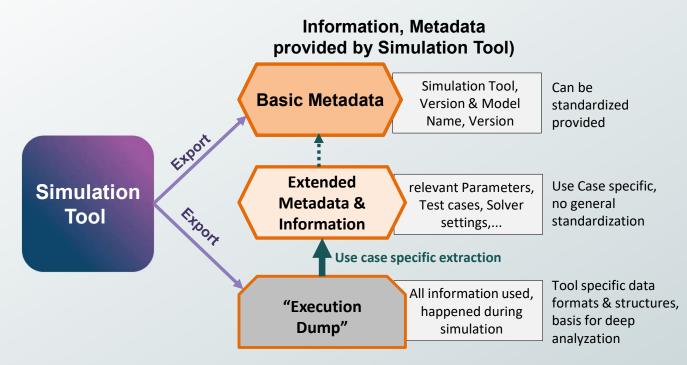
- Credible Modeling using Credible Modeling Process + SSP-Traceability Layered Standard
 - Achieve traceability, seamless documentation, model exchange

- Importance of process structures and aligned metadata for implementation of traceability, search and reuse
 - Usage of Modelica SSP-standard and the SSP-traceability layered standard

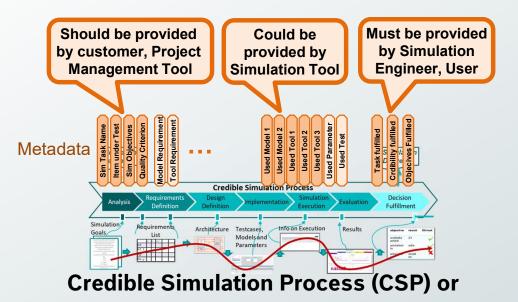

Set of Metadata for basic Traceability

Metadata	Sim.Task Phase	Source	
Ordering Project	Administration	Project	Tool
Simulation Task Name	(Data)	Management Tool	Tool
Item under Test		Project Management	Tool
Simulation Objective	Analysis		User
Quality/Cred. Criterion		Tool	User
Used Model, Version	Execution	Simulation Tool	Tool
Used Tool, Version	Execution	Simulation 100i	Tool
Task fulfilled	Fulfillment	Simulation/	User
Credibility fulfilled		Modeling Task	User
Objectives fulfilled		supporting Tool	User

· Already tool support available and industrial application



Thank you for your attention


Metadata needed for (basic) Traceability

Basic Metadata can be standardized and provided by Simulation Tools Extended Metadata are Usecase specific, only support in generation possible

prostep IVIP

Metadata needed for basic Traceability

Credible Modeling Process (CMP)

Set of Metadata for basic Traceability

Metadata Simulation	Metadata Modeling	Sim.Task Phase	Source	Provided by
Ordering Project	Ordering Project	Administration	Project	Tool
Simulation Task Name	Modeling Task Name	(Data)	Management Tool	Tool
Item under Test	Item Modeled		Project	Tool
Simulation Objective	Modeling Objective	Analysis	Management	User
Quality/Cred. Criterion	Quality/Cred. Criterion		Tool	User
Used Model, Version	Used Model, Version	Execution	Simulation	Tool
Used Tool, Version	Used Tool, Version	Execution	Tool	Tool
Task fulfilled	Task fulfilled		Simulation/ Modeling Task	User
Credibility fulfilled	Credibility fulfilled	Fulfillment		User
Objectives fulfilled	Objectives fulfilled		supporting Tool	User

Minimal set of Metadata that is needed for basic traceability, search and reuse

Can be used as a starting point for implementation of these functionalities
 Important in this approach: Availability of data and user acceptance