

FMI, Layered Standards and ASAM Standards -Enabling Seamless SiL Simulation of Virtual ECU

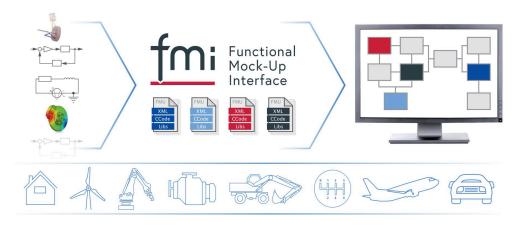
International ASAM Conference 2024, Dec 4th /5th 2024

Christian Bertsch (Bosch) Kahramon Jumayev (Akkodis) Pierre Mai (PMSF) Benedikt Menne (dSPACE) Masoud Najafi (Altair) Tim Pfitzer (Bosch) Jan Ribbe (Synopsys) Klaus Schuch (AVL)

Overview

- The Functional Mock-up Interface 3.0
- Layered Standard concept

Three Layered Standards by the FMI Project


- Layered Standard for XCP
- Layered Standard for Network Communication
- Layered Standard for Structured Data
- Demo from different SiL tool vendors illustrates cross-manufacturer interoperability of FMI 3.0 and these layered standards.

The Functional Mock-Up Interface

The Functional Mock-up Interface is a free standard that defines a container and an interface

- to exchange dynamic simulation models
- using a combination of XML files, binaries and C code, distributed as a ZIP file.
- Current releases: FMI 2.0.5 and FMI 3.0.2
- 200+ tools and libraries support FMI

FMI Project

Motivation for FMI 3.0:

New use-cases and requests:

- Virtual Electronic Control Units (**vECUs**):
 - better support needed!
- Advanced Co-Simulation
 - improved co-simulation methods are needed to improve performance and accuracy
- Multi-FMU simulations are getting more common
 - Events necessary in complex control systems
 - Events must be synchronized across FMUs
- New ML, **AI, optimization** applications
 - More derivatives computations is required

Main Improvements:

Event mode for Co-SimulationIntermediate variable update	erformance Accuracy
 Clocks 	Perfo
 New variable types 	
 Array variables 	o
 Terminals and icon 	cations
FMI for Scheduled Execution (SE)	
 Adjoint derivatives 	SE) SE) Vew Applic
 Preparation for Layered Standards 	

Layered Standards

- Layered standards extend the FMI standard for new application domains..
- They can be defined by different organizations

Layered Standards in development by the FMI Project:

- **FMI-LS-XCP:** for XCP support
- **FMI-LS-STRUCT**: for structuring of variables + lookup tables
- FMI-LS-BUS: for network communication

bles – Demo!

• FMI-LS-REF: description of basic validation experiments and other files attached to an FMU

FMI-LS-XCP: Layered Standard for XCP support

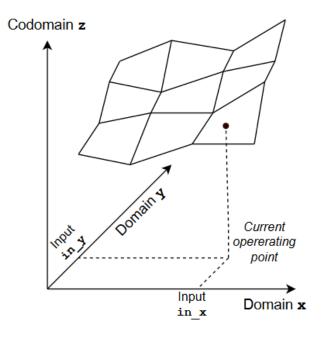
XCP (Universal Measurement and Calibration Protocol) is a network protocol originating from **ASAM** for connecting calibration systems to electronic control units, ECU

Version v1.0.0 released on Dec. 3rd 2024!

Main idea:

- ship an A2L file according to the ASAM ASAP2 in standardized location inside the FMU
- describe the capabilities w.r.t. the XCP protocol

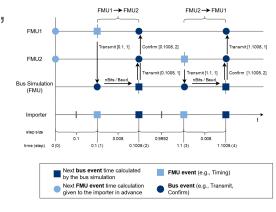
SiL Simulation



FMI LS-STRUCT: Layered Standard for Variable Structuring

Current scope:

- Maps sampled on rectilinear grids using FMI 3.0 arrays by adding meta-data to define
 - Domains
 - Codomain
 - Optionally: Variables referencing current operating point, ...
 - Support for Modelica Standard Library CombiTables
 - Compatible with ASAM-MCD2 MAPs, CURVEs, …
- Maps sampled on an irregular grid ("Point Cloud")
- Using "FMI 3.0 Terminals" for grouping

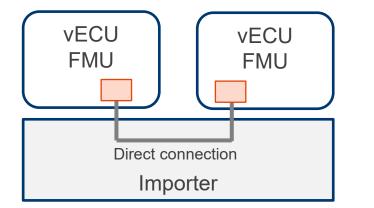


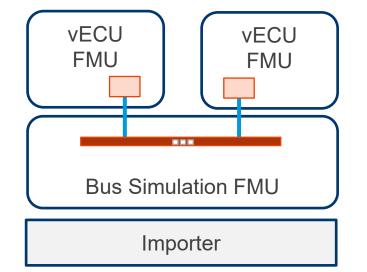

8

FMI-LS-BUS: Layered Standard Network Communication

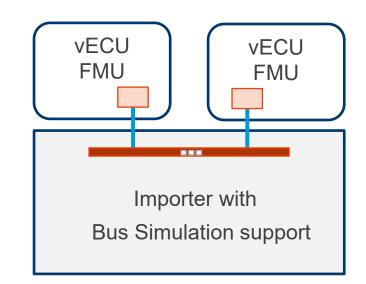
Simulation of automotive systems requires network communication between vECUs. Idea:

- Use FMI 3.0 core standard features to specify a common bus interface, using Co-Simulation, Clocks and Terminals
- Support automotive networks protocols and others from different industries (CAN, LIN, FlexRay, Ethernet, ...)
- Using network description formats DBC, LDF, O ASAM FIBEX, ARXML
- Two variants:
 - Physical abstraction layer ("high cut"): Simply transport physical signal values between virtual ECUs by using unit-based and clocked variables
 - Network abstraction ("low cut"): Detailed emulation of a specified bus system to realize virtualized bus driver implementations, including feedback from the physical drivers about transmission status or network node states





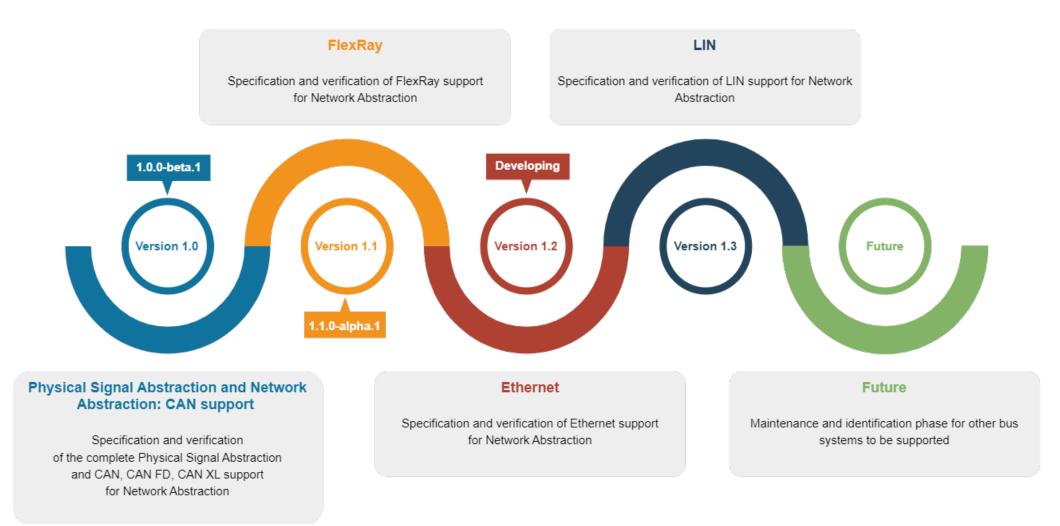
FMI-LS-BUS: Layered Standard Network Communication



- 1:1 connection
- Idealized bus (only ideal timing, no bandwidth limits, ...)
- Standard FMI Importer can be used

Bus simulation via Bus Simulation FMU

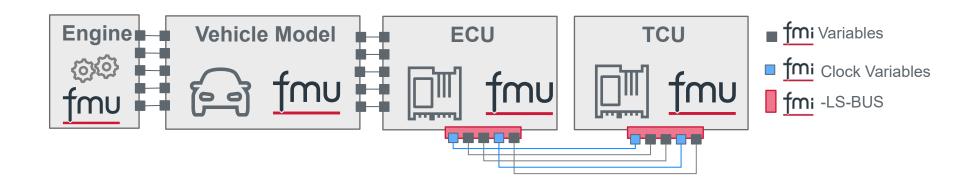
- n:m connection
- Bus behavior can be simulated
- Standard FMI Importer can be used
- Can be generated based on network descriptions
- Changes of on system level require regeneration



Bus simulation supported by the Importer

- n:m connections
- Bus behavior can be simulated
- Dynamic configuration
- No network descriptions needed

FMI-LS-BUS: Layered Standard Network Communication



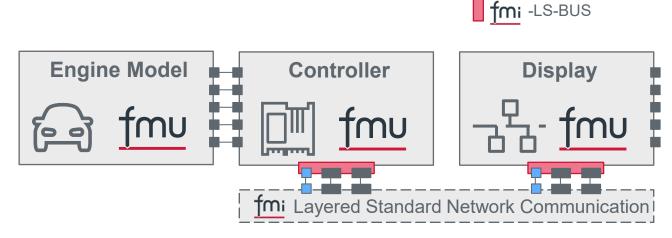
FMI-LS-BUS: High Cut Demonstrator

Closed-loop fuel injection control system

Components:

- TCU: Transmission Control Unit
- ECU: Engine Control Unit Here only used as a bus adapter
- Vehicle Model incl. Engine Model: Simplified vehicle model

FMI-LS-BUS: Low Cut Demonstrator

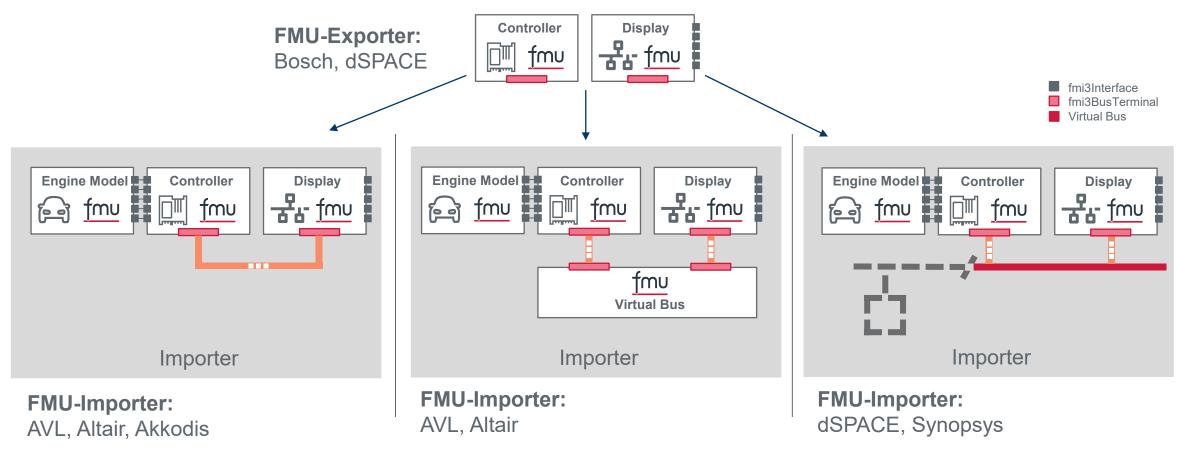

Closed-loop fuel injection control system

Components:

- Controller: AUTOSAR based virtual electronic control unit (vECU-Type3)
 including BSW configuration and components e.g. PDUR, CAN-IF & FMI3IsBus Driver
- Engine Model: Simplified vehicle model
 including relevant sensor and actuator functions
- Display: Restbus simulation model including simplified PDU scheduler (non-AUTOSAR) and signal to bus interface & FMI3IsBus Driver

Demonstration:

- Seamless Tool Interoperability: Demonstrating FMUs from diverse tools and vendors integrated into various simulation environment
- Configurable Virtual Bus Setup: Showcasing how the bus setup can adapt to various contexts without the need for re-exporting FMUs


fmi Variables

Clock Variables

FMI-LS-BUS: Low Cut Demonstrator

Closed-loop fuel injection control system

* reduced XCP focused setup without bus simulation

Take-Away: (R)evolution to SiL Simulation of Virtual ECUs

- The FMI standard alone is available for exchanging simple virtual ECUs in early development phases.
- For more complex vECUs this standard is not sufficient, especially if these includes Bus Interfaces and XCP requirements.
- To close this functional gap the FMI project and partners are working intensively on the FMI-LS-BUS, FMI-LS-XCP and FMI-LS-STRUCT that enables efficient exchange between partners for such virtual ECUs.
- The advantages for validation are obvious:
 - Lower integration costs thanks to better interoperability of tools and test platforms from different vendors within virtual validation scenarios
 - More efficient collaboration thanks to significantly reduced coordination effort between OEMs and suppliers

Questions? Functional Mock-up Interface †mi **Comments?** XML CCode Libs XML CCode Libs XML CCode Libs XML CCode Libs Ideas? Feedback?

Join the FMI LinkedIn Group!