
© 2021 FMI Modelica Association Project | www.fmi-standard.org

The Functional Mock-up Interface 3.0
-

New Features Enabling New Applications

Andreas Junghanns, Torsten Blochwitz, Christian Bertsch, Torsten Sommer,
Karl Wernersson, Andreas Pillekeit, Irina Zacharias, Matthias Blesken,

Pierre R. Mai, Klaus Schuch, Christian Schulze, Cláudio Gomes, Masoud Najafi

© 2021 FMI Modelica Association Project | www.fmi-standard.org 2

 Overview
 Motivation
 New in FMI 3.0
 FMI Interface Types (Model Exchange, Co-Simulation, Scheduled Execution)
 New Data Types
 Array Variables
 Terminals
 FMI for Co-Simulation
 Event Handling
 Intermediate Update

 Clocks
 Adjoined Derivatives
 Support of Layered Standards
 Miscellaneous

 Roadmap, Resources

Contents

© 2021 FMI Modelica Association Project | www.fmi-standard.org 3

FMI: Simpler „Plumbing“ for Simulation
 FMI for Model Exchange:

How to connect systems of equations (ODEs)
 FMI for Co-Simulation:

How to connect “any” model or tool

 Decouple Know-How between producers and
users of FMUs

 Massive Re-use of modelling investment
 Many new use-cases are now viable
 150+ tools now support FMI:

See: fmi-standard.org/tools

https://fmi-standard.org/

https://fmi-standard.org/

© 2021 FMI Modelica Association Project | www.fmi-standard.org 4

150+ tools support FMI now: many users now, many new use-case requests:
 Virtual Electronic Control Units (vECUs):
 FMI 2.0 works well for physics simulations: better support for vECUs is needed

 Advanced Co-Simulation
 Co-Simulation is the more popular interface type: improved co-simulation methods

are needed to improve performance and accuracy
 Multi-FMU simulations are getting more common
 Events must be synchronized across FMUs

 New ML and AI applications
 More derivatives computations is required

Motivation for FMI 3.0

© 2021 FMI Modelica Association Project | www.fmi-standard.org 5

N
ew

 A
pp

lic
at

io
n

Pe
rf

or
m

an
ce

A
cc

ur
ac

y Event Mode for Co-Simulation
 Intermediate Variable Update
 Clocks
 New Types
 Array Variables
 Terminals and Icons
 FMI for Scheduled Execution
 Preparation for Layered Standards

FMI 3.0: Main Improvements

© 2021 FMI Modelica Association Project | www.fmi-standard.org 6

FMI 3.0: New Interface Type – Scheduled Execution

FMI 2.0 Model Exchange Co-Simulation

FMI 3.0 Model Exchange Co-Simulation Scheduled Execution

Scheduled Execution allows coupling several FMUs with one,
external scheduler (OS)

© 2021 FMI Modelica Association Project | www.fmi-standard.org 7

FMI 1.0, FMI 2.0 FMI 3.0 Remarks
fmiReal fmi3Float32 Discrete and continuous variables

fmi3Float64 States, derivatives, event-indicators
fmiInteger fmi3Int8, fmi3UInt8

Discrete variables

fmi3Int16,
fmi3UInt16

fmi3Int32,
fmi3UInt32

fmi3Int64,
fmi3UInt64

fmiBoolean fmi3Boolean char

fmiString fmi3String const char* ('\0' terminated, UTF-8 encoded)
fmi3Binary const char* (e.g. sensor outputs, bitmaps, …)
fmi3Clock Transport information about events

FMI 3.0: New Data Types

© 2021 FMI Modelica Association Project | www.fmi-standard.org 8

Array Variables (Vectors, Matrices, …)
FMI 1.0 and FMI 2.0:
 Naming convention for array elements (building.room.temp[0], building.room.temp[1], …)
 Array elements are treated as scalars, one valueReference for each variable

FMI 3.0:
 Variables can have multiple <Dimension> elements
 Each dimension can be:
 Constant: specified by <start> attribute
 Changeable: depends on a structural parameter which

can change its value only in Configuration or Reconfiguration Mode
 fmi3SetXXX, fmi3GetXXX work on whole arrays

© 2021 FMI Modelica Association Project | www.fmi-standard.org 9

Terminals
 Terminals group input and output variables to Terminals, which represent buses or physical connectors
 Predefined matching rules (plug, bus, sequence) for the whole Terminal, other rules are possible

 FMI Terminals are not acausal! The causality (input, output) is defined by the referenced variable!

© 2021 FMI Modelica Association Project | www.fmi-standard.org 10

 Introduction of Event Mode like in Model Exchange
 Event Mode can be entered by the importer:
 to handle input events triggered outside the FMU
 on request of the FMU

 fmi3DoStep(…) can return before
communicationStepSize is reached if an FMU
internal event needs to be treated outside

 Capability flag hasEventMode signals if event
handling is supported by the FMU

 Argument eventModeUsed of
fmi3InstantiateCoSimulation signals if event
handling is supported by the importer

FMI for Co-Simulation: Event Handling
FMU State Setable

fmi3Reset

Initialized

Instantiated

Initialization Mode

fmi3EnterInitializationMode

Terminated

fmi3Terminate

fmi3Instantiate != NULL

Configuration Mode
fmi3EnterConfigurationMode

fmi3ExitConfigurationMode

fmi3FreeInstance

a function call for this or any other...

a function call for this instance...
a function call for this instance...

a function call for this or any other...

fm
i3

En
te

rC
...

fm
i3

Ex
itC

o.
..

Event Mode

fmi3EnterEventMode

fmi3EnterS...

[eventModeUsed == fmi3False]

Step Mode

Reconfiguration...

Intermediate...
FMU calls...

fmi3CallbackIntermediateUpdate...

fmi3ExitInitializationMode

[else]

Viewer does not support full SVG 1.1

© 2021 FMI Modelica Association Project | www.fmi-standard.org 11

 FMI1/2 CS: FMUs exchange values only at communication points.
 FMI3.0: allows information exchange between the FMU and the master

also at intermediate time points
 Realized with an extension to the state machine: Intemeidate update mode

which can be entered by the FMU via the callback function
fmi3CallbackIntermediateUpdate(…) at arbitrary times out of
fmi3DoStep(…)

 This enables various use cases:
 Advanced co-simulation algorithms using interpolation / extrapolation techniques
 Transmission Line Modeling (TLM) co-simulation
 Input approximation similar to what is possible in FMI 2.0
 More detailed plotting of simulation results (using additional time point)

FMI for Co-Simulation: Intermediate Variable Access

© 2021 FMI Modelica Association Project | www.fmi-standard.org 12

 Clocks synchronize FMUs with the importer and with other FMUs:
 Clocks carry the information that a specific event happens
 Clocked variables belong to one clock (a so-called clocked model partition). They change only if this

clock is active.
 Clocks allow precise handling of time events (independent from continuous time: fmi3SetTime(), or

arguments of fmi3DoStep())

 In Scheduled Execution Communication Clocks are used:
 by the importer to identify the specific partition which is to be executed
 by the FMU to announce, which model partition wants to be scheduled

Clocks

© 2021 FMI Modelica Association Project | www.fmi-standard.org 13

Clock Types
Clock Type causality interval Example

Time-based

periodic clock

input

constant Clocked PI-controller with a defined constant interval

fixed
Clocked PI-controller, interval is defined by periodic fmi3SetClock
calls

calculated Clocked PI-controller, interval is defined by fixed parameter(s) of the
FMU

tunable Clocked PI-controller, interval is defined by tuneable parameter(s) of
the FMU

aperiodic clock

input

changing

Simulation of the behaviour of a control algorithm with non constant
execution time,
Generation of pulse sequences

countdown Time delayed action after an event, for example ignition signal some
time after crankshaft angle event

Triggered

input triggered Control algorithm, triggered by a crankshaft angle sensor

output triggered Crankshaft angle sensor which ticks several times per revolution

© 2021 FMI Modelica Association Project | www.fmi-standard.org 14

• In several applications, including backpropagation for gradient-based training AI models,
adjoint derivatives (“vector gradient products" (VJPs)) are needed

• They can be implemented efficiently using revers mode automatic differentiation (AD)
• FMI 3.0 provides now two access functions for partial derivatives:

Benefit:
• This will allow to more efficiently encapsulate and train AI models with FMI
• Connection of the Python/Julia tool world of AI to the system simulation world
• Enabling the combination of physics-based and AI-based models (e.g. neural ODEs) and

training in a unified framework

Adjoint Derivatives

© 2021 FMI Modelica Association Project | www.fmi-standard.org 15

 The layered standard concept allows the specification of standards on top of FMI
 XML element annotations and strings allow additional semantic for variables and terminals
 Extra folder in FMU zip-file allows shipping of additional files at a well-defined place without disturbing

compatibility

 Examples:
 XCP: When packaging virtual electronic control units (vECUs), XCP allows standardized access (see

ASAM) to ECU internal variables (in preparation on FMI GitHub)
 Network2Signals: Allows grouping and description of FMU inputs and outputs as network signals (in

preparation on FMI GitHub)
 Including of 3D-Visualization to FMUs which represent multi body simulation models (prototype from

ESI ITI and TU Dresden)

Concept of Layered Standard

© 2021 FMI Modelica Association Project | www.fmi-standard.org 16

 Graphical representations for the whole FMU and for Terminals can be defined
 Alias variable names are now specified by a list of alias names for each variable and no longer by a

separate variable with the same valueReference.
 Dependencies might change at runtime due to variable structure of the model or due to changes of array

sizes. Dependencies for (array) variables can now be retrieved at runtime.
 Asynchronous execution of fmi2DoStep was removed for simplification. This feature was never used

and can be implemented by the importer.
 Improvement and clarification of source code FMUs for better platform independency.

Miscellaneous

© 2021 FMI Modelica Association Project | www.fmi-standard.org 17

 FMI 3.0 Beta 2 is available now

 2 PlugFests held, 2 more planned in 2021

 We are planning to release FMI 3.0 early 2022

 Resources:
 Development process can be tracked on GitHub: https://github.com/modelica/fmi-standard
 FMPy is permanently updated to support FMI 3.0: https://github.com/CATIA-Systems/FMPy
 Reference FMUs: https://github.com/modelica/Reference-FMUs

Roadmap

https://github.com/modelica/fmi-standard
https://github.com/CATIA-Systems/FMPy
https://github.com/modelica/Reference-FMUs

	The Functional Mock-up Interface 3.0�-�New Features Enabling New Applications
	Contents
	FMI: Simpler „Plumbing“ for Simulation
	Motivation for FMI 3.0
	FMI 3.0: Main Improvements
	FMI 3.0: New Interface Type – Scheduled Execution
	FMI 3.0: New Data Types
	Array Variables (Vectors, Matrices, …)
	Terminals
	FMI for Co-Simulation: Event Handling
	FMI for Co-Simulation: Intermediate Variable Access
	Clocks
	Clock Types
	Adjoint Derivatives
	Concept of Layered Standard
	Miscellaneous
	Roadmap

