
The Functional Mockup Interface
for Tool independent Exchange of

Simulation Models

Torsten Blochwitz (ITI), Martin Otter (DLR-RM)

 M. Arnold University of Halle

 C. Bausch, M. Monteiro Atego Systems GmbH

 C. Clauß, S. Wolf Fraunhofer IIS EAS, Dresden

 H. Elmqvist, H. Olsson Dassault Systèmes, Lund

 A. Junghanns, J. Mauss QTronic, Berlin

 T. Neidhold ITI, Dresden,

 D. Neumerkel Daimler AG, Stuttgart

 J.-V. Peetz Fraunhofer SCAI, St. Augustin

 Modelica 2011, 21st,22nd March

Modelica 2011: Functional Mockup Interface Slide 2

Functional Mock-up Interface (FMI) - Motivation (1)

Problems / Needs

Component development by supplier

Integration by OEM

Many different simulation tools ?

supplier1 supplier2 supplier3 supplier4 supplier5

OEM

supplier1

tool 1

supplier2 supplier3 supplier4 supplier5

tool 2 tool 3 tool 4 tool 5

FMI OEM

Solution

Reuse of supplier models by OEM:

DLL (model import) and/or

Tool coupling (co-simulation)

Protection of model IP of supplier

! supplier1

supplier2

supplier3

OEM

Added Value

Early validation of design

Increased process

efficiency and quality

slide from Nick Suyam, Daimler (adapted)

Modelica 2011: Functional Mockup Interface Slide 3

FMI - Motivation (2)

No standards available for:

Model interface based on C or binaries

Co-simulation between simulation tools

Lots of proprietary interfaces:

Simulink: S-function

Modelica: external function, external object interface

QTronic Silver: Silver-Module API

SimulationX: External Model Interface

NI LabVIEW: External Model Interface, Simulation Interface Toolkit

Simpack: uforce routines

ADAMS: user routines

…

Modelica 2011: Functional Mockup Interface Slide 4

FMI – Overview

The FMI development is part of the ITEA2 MODELISAR project

(2008 - 2011; 29 partners, Budget: 30 Mill. €)

FMI development initiated, organized and headed by Daimler AG

Improved Software/Model/Hardware-in-the-Loop Simulation,

of physical models from different vendors.

Open Standard

14 Automotive Use-Cases to evaluate FMI.

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

Modelica 2011: Functional Mockup Interface Slide 5

FMI - Main Design Idea (1)

FMI for Model Exchange:

Version 1.0 released in January 2010

FMI for Co-Simulation:

Reuses as much as possible from FMI for Model Exchange standard

Version 1.0 released in October 2010

Tool

 Solver

FMU

 Model

Tool

FMU

Model

Solver

Modelica 2011: Functional Mockup Interface Slide 6

FMI - Main Design Idea (2)

A component which implements the interface is called

Functional Mockup Unit (FMU)

Separation of

Description of interface data (XML file)

Functionality (C code or binary)

A FMU is a zipped file (*.fmu) containing the XML description file and the

implementation in source or binary form

Additional data and functionality can be included

Interface specification: www.functional-mockup-interface.org

Modelica 2011: Functional Mockup Interface Slide 7

XML schema (.xsd)

defined by the

FMI specification

Modelica 2011: Functional Mockup Interface Slide 8

FMI XML Schema

Information not needed for execution is stored in one xml-file:

Complex data structures give still simple interface.

Reduced overhead in terms of memory.

Variable names and attributes

Definition of display units

Definition of type defaults

Default stop time, tol. etc.

Tool specific data

Modelica 2011: Functional Mockup Interface Slide 9

Example
<?xml version="1.0" encoding="UTF8"?>

<fmiModelDescription

 fmiVersion="1.0"

 modelName="Modelica.Mechanics.Rotational.Examples.Friction"

 modelIdentifier="Modelica_Mechanics_Rotational_Examples_Friction"

 guid="{8c4e810f-3df3-4a00-8276-176fa3c9f9e0}"

 ...

 numberOfContinuousStates="6"

 numberOfEventIndicators="34"/>

 <UnitDefinitions>

 <BaseUnit unit="rad">

 <DisplayUnitDefinition displayUnit="deg" gain="57.2957795130823"/>

 </BaseUnit>

 </UnitDefinitions>

 <TypeDefinitions>

 <Type name="Modelica.SIunits.AngularVelocity">

 <RealType quantity="AngularVelocity" unit="rad/s"/>

 </Type>

 </TypeDefinitions>

 <ModelVariables>

 <ScalarVariable

 name="inertia1.J"

 valueReference="16777217"

 description="Moment of inertia"

 variability="parameter">

 <Real declaredType="Modelica.SIunits.Torque" start="1"/>

 </ScalarVariable>

 ...

 </ModelVariables>

</fmiModelDescription>

modelDescription.xml

Modelica 2011: Functional Mockup Interface Slide 10

C-Interface

Two C-header files:

Platform dependent definitions (basic types):

C-functions:

18 core functions

6 utility functions

no macros

C-function name: <ModelIdentifier>_<name>, e.g. Drive_fmiSetTime"

Modelica 2011: Functional Mockup Interface Slide 11

C-Interface

Instantiation:
 fmiComponent fmiInstantiateXXX(fmiString instanceName, ...)

Returns an instance of the FMU. Returned fmiComponent is a parameter of the

other interface functions. It is of type void* for the master. The FMU uses it to

hold all necessary information.

Functions for initialization, termination, destruction

Support of real, integer, boolean, and string inputs, outputs, parameters

Set and Get functions for each type:
 fmiStatus fmiSetReal (fmiComponent c,

 const fmiValueReference vr[], size_t nvr,

 const fmiReal value[])

 fmiStatus fmiSetInteger(fmiComponent c,

 const fmiValueReference vr[], size_t nvr,

 const fmiInteger value[])

Identification by valueReference, defined in the XML description file for each

variable

Modelica 2011: Functional Mockup Interface Slide 12

FMI for Model Exchange (1)

Import and export of input/output blocks (FMU – Functional Mock-up Unit)

described by

differential-, algebraic-, discrete equations,

with time-, state, and step-events

FMU can be large (e.g. 100000 variables)

FMU can be used in an embedded system (small overhead)

FMUs can be connected together

Modelica 2011: Functional Mockup Interface Slide 13

For example: 10 input/output signals (u/y) for connection and

 100000 internal variables (v) for plotting

FMI for Model Exchange

Signals of an FMU

Modelica 2011: Functional Mockup Interface Slide 14

// Set input arguments

fmiSetTime(m, time);

fmiSetReal(m, id_u1, u1, nu1);

fmiSetContinuousStates(m, x, nx);

// Get results

fmiGetContinuousStates(m, derx, nx);

fmiGetEventIndicators (m, z, nz);

Example:

Modelica 2011: Functional Mockup Interface Slide 15

Co-Simulation

Definition:

Coupling of several simulation tools

Each tool treats one part of a modular coupled problem

Data exchange is restricted to discrete communication points

Subsystems are solved independently between communication points

Motivation:

Simulation of heterogeneous systems

Partitioning and parallelization of large systems

Multirate integration

Hardware-in-the-loop simulation

Modelica 2011: Functional Mockup Interface Slide 16

FMI for Co-Simulation

Master/slave architecture

Considers different capabilities of simulation tools

Support of simple and sophisticated coupling algorithms:

Iterative and straight forward algorithms

Constant and variable communication step size

Allows (higher order) interpolation of continuous inputs

Support of local and distributed co-simulation scenarios

FMI for Co-Simulation does not define:

Co-simulation algorithms

Communication technology for distributed scenarios

Modelica 2011: Functional Mockup Interface Slide 17

FMI for Co-Simulation

Signals of an FMU for Co-Simulation

Inputs, outputs, and parameters, status information

Derivatives of inputs, outputs w.r.t. time can be set/retreived for

supporting of higher order approximation

u y

Enclosing Model

v

External Model (FMU instance)

Co-Simulation Slave (FMU instance)

t

Model

Solver

Co-Simulation Master

t0, p

Modelica 2011: Functional Mockup Interface Slide 18

FMI for Co-Simulation

C-Interface

Execution of a time step:
fmiStatus fmiDoStep(fmiComponent c,

 fmiReal currentCommunicationPoint,

 fmiReal communicationStepSize, fmiBoolean newStep)

communicationStepSize can be zero in case of event iteration

newStep = fmiTrue if last step was accepted by the master

It depends on the capabilities of the slave which parameter constellations and

calling sequences are allowed

Depending on internal state of the slave and the function parameters, slave

can decide which action is to be done before the computation

Return values are fmiOK, fmiDiscard, fmiError, fmiPending

Asynchronous execution is possible

Modelica 2011: Functional Mockup Interface Slide 19

FMI for Co-Simulation

Use Case

Co-Simulation stand alone:

Co-Simulation tool:

Process

Executable Library (DLL)

Slave

 Model Solver

Slave

 Model Solver
Master

Process 1

Executable Library (DLL)

Process 2

Simulation tool

Slave

 Model Solver

FMI

Wrapper

FMI

Wrapper

FMI

Wrapper

FMI

Wrapper Master

Modelica 2011: Functional Mockup Interface Slide 20

FMI for Co-Simulation

Use Case

Distributed co-simulation scenario

Data exchange is handled by a communication layer which is implemented

by a special FMI wrapper

Master and slave utilize FMI for Co-Simulation only

Modelica 2011: Functional Mockup Interface Slide 21

Tools supporting FMI (from FMI web site, March 2011)

Modelica 2011: Functional Mockup Interface Slide 22

Conclusions and Outlook

FMI has a high potential being widely accepted in the CAE world:

Initiated, organized and pushed by Daimler to significantly improve the

exchange of simulation models between suppliers and OEMs.

Defined in close collaboration of different tool vendors.

Industrial users were involved in the proof of concept.

FMI can already be used with several Modelica tools, Simulink, multi-

body and other tools.

FMI is maintained and further developed:

Unification and harmonization of FMI for Model Exchange and

Co-Simulation (FMI 2.0) within Modelisar.

Improved handling of time events.

Clean handling of changeable parameters.

Efficient interface to Jacobian matrices.

Modelica 2011: Functional Mockup Interface Slide 23

Acknowledgments

FMI initiated and organized: Daimler AG (Bernd Relovsky,)

Head of FMI development: Dietmar Neumerkel (Daimler AG)

Head of FMI-for-Model-Exchange: Martin Otter (DLR-RM)

FMI-for-Model-Exchange Torsten Blochwitz (ITI)

Core-Design by: Hilding Elmqvist (Dassault Systèmes -Dynasim)

 Andreas Junghanns (QTronic)

 Jakob Mauss (QTronic)

 Hans Olsson (Dassault Systèmes -Dynasim)

 Martin Otter (DLR-RM)

Other MODELISAR contributors: Ingrid Bausch-Gall, Bausch-Gall GmbH

 Alex Eichberger, SIMPACK AG

 Rainer Keppler, SIMPACK AG

 Gerd Kurzbach, ITI GmbH

 Carsten Kübler, TWT

 Johannes Mezger, TWT

 Thomas Neidhold, ITI GmbH

 Dietmar Neumerkel, Daimler AG

 Peter Nilsson, Dassault Systèmes-Dynasim

 Antoine Viel, LMS International

 Daniel Weil, Dassault Systèmes

Other contributors: Johan Akesson, Lund University

 Joel Andersson, KU Leuven

 Roberto Parrotto, Politecnico di Milano

Modelica 2011: Functional Mockup Interface Slide 24

Acknowledgments

FMI for Co-Simulation Martin Arnold, University Halle, Germany

Core-Design by: Constanze Bausch, Atego Systems GmbH, Wolfsburg, Germany

 Torsten Blochwitz, ITI GmbH, Dresden, Germany

 Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany

 Manuel Monteiro, Atego Systems GmbH, Wolfsburg, Germany

 Thomas Neidhold, ITI GmbH, Dresden, Germany

 Jörg-Volker Peetz, Fraunhofer SCAI, St. Augustin, Germany

 Susann Wolf, Fraunhofer IIS EAS, Dresden, Germany

Contributors: Jens Bastian, Fraunhofer IIS EAS, Dresden, Germany

 Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany

 Dietmar Neumerkel, Daimler AG, Böblingen, Germany

 Martin Otter, DLR, Oberpfaffenhofen, Germany

 Tom Schierz, University Halle, Germany

 Wolfgang Trautenberg, Simpack AG, Germany

 Klaus Wolf, Fraunhofer SCAI, St. Augustin, Germany

Partially funded by: BMBF, VINNOVA, DGCIS, organized by ITEA2

