
This work is licensed under a CC BY-SA 4.0 license.

© 2021-2023, Modelica Association and contributors.

Modelica® is a registered trademark of the Modelica Association.
eFMI® is a registered trademark of the Modelica Association.
FMI® is a registered trademark of the Modelica Association.
SSP® is a registered trademark of the Modelica Association.
DCP® is a registered trademark of the Modelica Association.

Third party marks and brands are the property of their respective holders.

https://creativecommons.org/licenses/by-sa/4.0/
https://modelica.org/

© 2023 Modelica Association | www.modelica.org

eFMI® scope and delimitation

Christoff Bürger
Dassault Systèmes

Christoff.Buerger@3ds.com

FMI User Meeting – 15th International Modelica Conference – 10th of October 2023

mailto:Christoff.Buerger@3ds.com

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 3

1. Scope of eFMI®: GALEC as example of satisfying non-functional quality requirements
2. Delimitation in embedded software domain: eFMI® vs. FMI®, AUTOSAR, ASAM, …

Agenda

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 4

eFMI is all about:
How to develop software satisfying non-functional requirements

besides just functional?

As an example, let us have a short look on eFMI GALEC.
(other examples would be eFMI Behavioral Models or inter-container linking for traceability)

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 5

Model

Bosch
MDG1 ECU

Astrée

SimulationX

Amesim

Testing & code analyses

System integration
*several possible

Binary
Code*

Production
Code*

Algorithm
Code

Behavioral
Model*

eFMU Manifest

AUTOSAR Builder

Dymola

CATIA DBM CATIA ESP

Starting point of
further code

generation: GALEC
program generated by

modeling tool.

eFMI Standard: Toolchain & workflow

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 6

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation

eFMI GALEC: Scope

GALEC program: sampled
algorithm with fixed

sampling period.

Block life-cycle specifies
usage via common
interface:
• (default) initialization
• sampling
• recalibration
• reinitialization
⇒ Defines valid system
integration scenarios.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 7

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation

• Imperative / causal language of high abstraction level (e.g., multi-dimensional real arithmetic, built-in
mathematical functions like sinus, cosine, interpolation 1D & 2D, solve linear equation systems etc.)

• Safe – embedded & real-time suited – and well-defined semantics
• Upper bound
• Statically known sizes and safe indexing
• Well-defined & never competing side effects

• Safe floating-point numerics
• Guaranteed NaN propagation
• Saturation of ranged variables

• Ordinary control-flow integrated, strict error handling concept
• Guaranteed error signal propagation enables delayed error handling

⇒ Guards further eFMI tooling

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 8

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:
• Target machine characteristics abstracted in:

• Idealized types (Boolean, Integer & Real)
• Builtin functions (e.g., construct & check NaN or ∞, convert Real ↔ Integer, extract fractional, rounding)
⇒ Idealized, but executable algorithms (math algorithms on computers)

• Builtin operators for multi-dimensional real arithmetic & builtin functions encapsulating common
mathematical algorithms (e.g., interpolation 1D, 2D, 3D; solve linear equations)
⇒ Optimization for target environment at production code generation

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 9

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:
• Well-defined onion-layered initialization:

• Dependencies: constants ← tuneable parameters ← dependent parameters ← inputs ← states & outputs
• Each has separate algorithmic initialization function
⇒ Safe, complex and optimizable initialization

• Simple block life cycle with support for input-dependent initialization, reinitialization & recalibration

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 10

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:
• Safety & simplicity first:

• Only for-loops and if-elseif-else control-flow
• Only Integer, no, int, short, unsigned, long long etc
• No implicit type conversions
• Unique way to write Real literals: X.X[e(+|-)X] (not 1e10, 1E+10, 1.0e10, .0)
• Only LF line endings, only UTF-8 encoding (code ASCII, comments UTF-8)
• …

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 11

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe – embedded & real-time suited – and well-defined semantics:
• Statically known sizes and safe indexing:

• No pointer arithmetic
• No memory-layout implications for multi-dimensionals (like vector elements must be consecutive memory)

⇒ Production code generators can rearrange (e.g., scalarize & decompose) multi-dimensionals
• Clear separation of statically-evaluable and run-time expressions; same syntax, but different evaluation times

⇒ Complex indexing expressions including, e.g., function calls, supported
• Dependent dimensionalities (e.g., input must be square matrix, vector twice length of 1st dimension of matrix)

• Upper bound:
• No recursion, only statically known looping (over size-fixed multi-dimensionals)

⇒ GALEC programs can be unrolled to sequence of conditional assignments.

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 12

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe – embedded & real-time suited – and well-defined semantics:
• Well-defined & never competing side effects

• Unique access to global state (self.name)
• Clear separation of functions (no access to global state) vs. methods (access to global state)
• Fixed evaluation order of function/method arguments (left-to-right)
• No method calls in argument-expressions
• No aliases, only call by value, inputs cannot be assigned
⇒ For every two GALEC statements, it is decidable if they can be switched (automatic parallelization).

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 13

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe floating-point numerics & ordinary control-flow integrated, strict error handling concept :
• Errors must be either handled in ordinary if-statements or propagated

• Operations that can cause NaN signal errors (e.g., relational operators like <, <=, >, >=)
• Signaled errors can be checked at later if-statements

⇒ delayed error handling (not C style spaghetti code on machine flags after each and every operation)
• Builtin functions signal errors:

• Every builtin function when undefined either, propagates NaN as result or signals NaN error
• Predefined signals for singular or non-unique linear equation systems, size issues (convert Real ↔ Integer) etc

⇒ Errors are always recognized (nothing slips through).
⇒ Enables handling of unforeseen runtime errors, for example, using a backup controller, reset to
previous state etc.

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 14

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation
well-suited as code generation target for modelling tools & source for embedded-code generation

⇒ GALEC is by language design safe and guards further eFMI tooling.
• Not an (operating) system level programming language

(that needs to be tamed by plethora of further anlyses tooling; pun on C & Co. intended)
• Production code tooling can optimize code – thanks to GALEC guarantees – by lowering abstraction

(which need no artificial taming, but can be if required, e.g., MISRA C:2012 compliance)
⇒ Simple language with well-defined semantic, well-suited for expressing and long term archiving
algorithmic solutions of physics models.
⇒ A language for safety-critical and real-time suited (control-)algorithms.

eFMI GALEC: Summary

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 15

1. Scope of eFMI®: GALEC as example of satisfying non-functional quality requirements
2. Delimitation in embedded software domain: eFMI® vs. FMI®, AUTOSAR, ASAM, …

Agenda

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 16

An eFMU is about the development of one software component (controller, virtual sensor etc) of a
complex cyber-physical system:
• Not about system integration of components

• Many other standards in different industries available (e.g., AUTOSAR, ASAM etc)
⇒ Use established standards for eFMU system-integration

• Not about system level programming (embedded OS, drivers, software frameworks etc)
⇒ Production Code generators tailor code for given target environment

• Not about distributing, interconnecting and parameterizing system simulations
• That is what FMI, DCP & SSP are for
⇒ Use FMI & co. ecosystem to distribute and setup (desktop environment) system simulations…
 …by exporting your production code as FMU

Scope of eFMI in embedded software domain

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 17

FMI: Standardized C interface to enable exchange and interoperability of simulations
• About how to distribute and integrate simulations
• Single abstraction level, 1 ↔ 1 (producer to consumer)
• Focus on interface of black-box implemented functionality

eFMI: Standardized development workspace to implement models in embedded environments
• About how to step-wise develop simulations from high-level model to low-level code
• Chain of abstraction levels, N ↔ M ↔ … ↔ L

(many development stakeholders with different tools and viewpoints)
• Focus to guarantee non-functional requirements (safety-critical & real-time) besides functional

⇒ We can develop functionality with eFMI and distribute it with FMI
⇒ Two complementary standards

eFMI vs. FMI: Two complementary standards

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 18

CATIA ESP

eFMI Standard: Deployment scenarios
Model

Bosch
MDG1 ECU

Astrée

SimulationX

Amesim

Testing & code analyses

System integration
*several possible

AUTOSAR Builder

Dymola

CATIA DBM

FMU
Binary
Code*

Production
Code*

Algorithm
Code

adapter for
FMI interface

Pick one
solution
when ready
and wrap in
FMU.

Behavioral
Model*

eFMU Manifest

modelDescription.xml

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 19

eFMI Standard: Deployment scenarios

Bosch
MDG1 ECU

Amesim

System integration
*several possible

Dymola

FMU
Binary
Code*

Production
Code*

Algorithm
Code

adapter for
FMI interface

Pick one
solution
when ready
and wrap in
FMU.

Behavioral
Model*

eFMU Manifest

modelDescription.xml

HPC

PC
Cloud

FMI
ecosystem
integration

customer
specific SW
integration

tool specific
wrapper

e.g., Matlab C
function block

target specific
binaries +
ecosystem

Use existing
standards for
system
integration
(not defined
by eFMI).

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 26

Modelica Association Project eFMI (MAP eFMI)

https://efmi-standard.org/

Deputy project
leader:
Hubertus
Tummescheit

Project leader:
Christoff Bürger

https://efmi-standard.org/

	Slide Number 1
	eFMI® scope and delimitation
	Agenda
	Slide Number 4
	eFMI Standard: Toolchain & workflow
	eFMI GALEC: Scope
	eFMI GALEC: Language characteristics
	eFMI GALEC: Language characteristics
	eFMI GALEC: Language characteristics
	eFMI GALEC: Language characteristics
	eFMI GALEC: Language characteristics
	eFMI GALEC: Language characteristics
	eFMI GALEC: Language characteristics
	eFMI GALEC: Summary
	Agenda
	Scope of eFMI in embedded software domain
	eFMI vs. FMI: Two complementary standards
	eFMI Standard: Deployment scenarios
	eFMI Standard: Deployment scenarios
	Modelica Association Project eFMI (MAP eFMI)

