

Linking Design Requirements to FMUs to

create LOTAR compliant MBSE models

Clément Coïc1 Mark Williams2 Juan Carlos Mendo3

José María Alvarez-Rodríguez4 Marcus Richardson3
1Modelon Deutschland GmbH, Germany, clement.coic@modelon.com
2PDES, Inc. and INCOSE, USA, mark.williams@incose.net
3The Boeing Company, USA, juan.c.mendo@boeing.com,

marcus.k.richardson@boeing.com
4Department of Computer Science and Engineering, Carlos III University

of Madrid, Spain, josemaria.alvarez@uc3m.es

Abstract

LOng Time Archiving and Retrieval (LOTAR) of models

is key to using the full capabilities of Model-Based

System Engineering (MBSE) in the design lifecycle.

LOTAR supports model exchange, reuse and the long-

term preservation of data. Archiving also supports the

preservation of our valuable product designs and

knowledge. Intending to be tool agnostic, LOTAR for

MBSE uses data standards from the Modelica Association

and other consortia. Therefore, it is important that users of

the Modelica based tools and standards understand the

LOTAR process to ensure that their data is reusable and

suitable for exchange and preservation. The PDES-

LOTAR MBSE workgroup is developing a series of

EN/NAS 9300 process specifications to standardize the

data preservation process, across the aerospace industry.

These specifications are customized for each specific

MBSE modeling domain, including: models illustrating

the logical and functional architectures; models to develop

and verify design requirements; models depicting

behaviors and simulations; and techniques for linking data

across multiple models. For the purpose of creating

simulation models, the group recommends using the

Modelica language standards, FMI (Functional Mockup

Interface), eFMI (FMI for embedded systems), and SSP

(System Structure and Parameterization) standards. The

LOTAR process requires the integration of industrial data,

data standards, and compliant vendor software. For the

purpose of this example, the archive process was

demonstrated by developing a tool-agnostic Modelica

model prototype that was exported into an FMU. The

unique features of the Modelica and FMI standards were

exposed and greatly enhanced using the Modelon Impact

software. The recommendations and workflow proposed

in this report were derived from this prototype with the

intent of significantly improving future LOTAR

implementations and promoting the adoption of these

standards across multiple industries.

Keywords: LOTAR, MBSE, MODELICA, FMI

1 Introduction

The issue is simple. The software products that we use to

build our models are disposable. They jeopardized the

retention and reusability of our knowledge. In an

Engineering-Manufacturing environment end-of-life is

five years for most software versions, and ten years for

backwards compatibility. However, after considering the

regulatory requirements, in-service support, future

product modifications, and the potential for accident

investigations, we must consider reliable access for

twenty years, or even up to fifty years for aircraft. This is

why LOTAR is important, and why it also promotes and

accelerates the industry’s efforts toward a digital

transformation.

The initiative to develop and qualify international data

standards rely on developing prototypes that couple the

engineering process with industrial data in a repeatable

workflow of procedures. In a first publication (Coïc

2020), the authors presented the LOTAR process and first

prototype results. This paper extends that effort and has

three goals:

1. To present the LOTAR framework for MBSE

models, emphasize the reliance on existing data

standards (like Modelica, FMI and SSP), and to

establish the need for capturing and exposing model

metadata.

2. Highlight the process needed to create the prototype

in order to support Peer Reviews and future testing

of the standard prior to its release.

3. Use the prototype to demonstrate new/enhanced

features, provide evidence for change requests, and

expose specification improvements to the individual

Modelica Association projects (e.g., Modelica

language, FMI, eFMI, and SSP).

The first communication was well received and aligned

with investigations executed by other consortia and

researchers in a parallel timeline. A notable example is the
work organized within the European ITEA3 Call6 project

(UPSIM 2020) on the topic of Credible models (Gall 2021

and Otter 2022). One key take-away from this project is

the diverse and unique use of Modelica records to host and

expose metadata parameters and thus compensate for the

unstructured support for metadata in the Modelica

language specification. A second example is the

acknowledgement (Hällqvist 2023) of how differences in

the metadata, derived from different versions of the same

model, enables the traceability and integration of features

demonstrated by multiple models from different authors

developed during the product life-cycle. A similar

approach was chosen for the work performed in

subsequent LOTAR prototypes expressively for

traceability purposes and is presented later in section 5.

This paper differs from our previous communication

(Coïc 2020) and attempts to expand the context of MBSE

implementations (Nallon 2020). We know we can archive

models and we also acknowledge that archiving a model

alone does not fully enable its reuse. It is also necessary

to archive its dependencies, purpose, sensitivity and

predictions. In this paper, the authors present the linking

capabilities that enable traceability of the model’s

purpose, objectives, and relationships to other models and

artifacts. For the purpose of this communication, we

defined explicit links from the behavior model’s elements

to their respective requirement specification.

Section 2 provides an overview of the industry value

when integrating Modelica Standards with standards from

other MBSE domains. Section 3 introduces the in-work

deliverables from the PDES-LOTAR MBSE team.

Section 4 describes an example linking a single Modelica

model with its associated requirements model. Section 5

describes how to capture traceability links holistically in

the MBSE Archive Information Package (AIP). Section 0

proposes a potential list of future investigations. Section 7

summarizes the results and recommendations.

2 The Value of MBSE Data

Standards

Multiple surveys recently conducted by the ProSTEP IVIP

Association across the Automotive and Aerospace

Industries indicate, that in the next 5 years the efforts

focused on Modeling and Simulation and its use for

Product certification, will increase at least 50-100%

(ProSTEP IVIP 2022).

With an increase in digitalized development and its

application to the certification processes through Model

Based Engineering (MBE), the industry will discover new

opportunities, while also facing new challenges.

Partially due to the short life-cycle of application

software, managing diverse digital designs while enabling

future model reuse is a challenge across all industries.

Facing this challenge is especially pertinent to the

Aerospace Industry with products that have a lifespan

longer than 40 years.

Digitalization encourages collaborative model sharing

and cross-company co-development with the added

challenges posed by Intellectual Property (IP) Protection,

Change Management, and Configuration Management.

Standards such as FMI, SSP and ISO STEP AP242

provide good solutions for certain domains in isolation,

such as Behavior Modeling and Simulation or 3D

modeling. However, when archiving or sharing a system

design, that is part of a holistic multidisciplinary product,

the industry needs standard solutions to integrate the data

across domains. The results must provide traceability from

top to bottom and bottom to top. From stakeholder

requirements, to the design requirements. From the

functional architecture to the installed software products.

From behavior analysis and simulations to the hardware

implementations and vice versa. This is the priority of the

PDES-LOTAR MBSE team (Williams 2023).

3 Archiving Domains and Workflow

The PDES-LOTAR MBSE team focuses on the applicable

data standards, the process, design sustainment and design

reuse. Under the category of LOTAR for MBSE (LOTAR

2023) the following sub-domain documentation has been

proposed:

• Part 500: General MBSE. The fundamental

concepts for long term archiving and retrieval of

Model-Based Systems Engineering information.

• Part 510: Requirements Management. The text,

graphics, tables, models, parameters, reference and

specification information that defines a product.

• Part 515: Validation and Verification. The “text

based” and “parameter based” information (expands

on Part 510), including Use Cases and Model Reports.

• Part 520: Analytical Behaviour Models. The

system or component simulations as described by

mathematical specification or executable code,

containing differential, algebraic and discrete

equations (not FEM).

• Part 530: Architecture Models. The system

functional, logical and structural representations,

defined using architecture description languages

(ADLs).

• Part 540: The Logical Bill of Materials (LBOM).

The system’s physical implementation requirements

and dependencies that feed the 3D spatial and

manufacturing designs.

• Part 550: Digital or Relational Links. The

traceability and relationship specifications between

interrelated models and elements across numerous

tools.

Figure 1 below depicts the Archive and Retrieval Process

Workflow for MBSE as defined in the LOTAR Part 500

document listed above. The goal is to reuse archived data,

if applicable, and create the Authoritative Source of Truth

(ASoT).

Figure 1. Archive and Retrieval Process Workflow

A pilot implementation of a preliminary workflow for

behavior models was described in the first publication

(Coïc 2020) and refined in subsequent prototypes

producing a generic process for all MBSE models and

data.

The “MBSE model” is a generic term used in the

workflow and can refer to a model from any of the

previously mentioned sub-domains in isolation or, more

frequently, to a linked set of cross-domain MBSE models.

For the purpose of archiving, models can be assembled in

a package, or segregated into different repository

packages. Based on guidelines from the OAIS standard

(ISO 14721), the model set is referred to as the “MBSE

Archive Information Package”, AIP, and contains all the

artifacts necessary for preserving, retrieving, restoring and

disseminating the digital information. This includes the

Verification & Validation artifacts of a given system or

subsystem, the fixity information relating to security of the

archive, and the linking information preserving the

relationships and interdependencies of artifacts both

internal and external to the package.

The following two sections describe in more detail the

prototypes developed. The first example demonstrates

how to link a single Modelica model with its associated

requirements model, and the second example describes

how to manage traceability links holistically at the MBSE

AIP package level

4 Prototype: Archiving a Modelica

Model with MBSE Links

The previous section introduced the archiving workflow

and the architecture of an Archive Information Package.

This section will illustrate how each step of the process

can be implemented. This presents a solution that is based

on open-source packages and, as the wording “prototype”

indicates, this is not a unique solution nor a standard for

future implementations. However, this proves that the

suggested concepts can be implemented by tool vendors

and allows us to explore process alternatives and

procedural improvements before standards are released.

4.1 Why Start with a Modelica Model?

It seems relevant to remind new users that the LOTAR

standard is not tool-dependent when it comes to the model

editor. However, the prototypes developed in the scope of

this working group should utilize, as much as possible,

open standards or open-source packages. Therefore, the

starting point of the prototype is a Modelica model. The

same common capabilities could be implemented by

different tool vendors, including those who rely on

proprietary languages or encrypted models. Modelica is

not a requirement, it is an open enabler to demonstrate the

concept.

4.2 Linking Capabilities in a Modelica Model

Models are developed for a given goal, objective or

purpose. Often, models are created to verify that a system

design meets its requirements. There might be several

models needed to support the verification process. The

model might be a testable requirement, describe a

functional system architecture, used to keep track of

decisions, or validate the selection of a given design

technology. The goal of the archived model is to provide

a key to information that the model retriever would benefit

from accessing in the future. However, it is not enough

just to mention or document the model’s goal. It is also

necessary to link the target model to the actual documents

or supporting models that host the information that

describes its purpose, boundaries, and the methods used to

create it. The model is incomplete without traceability to

its underlying requirements. This is the purpose of the Part

550 that is listed above, and also presented in this paper.

The Part 550 does not limit its scope to model goals. It

covers any type of link needed to point to the applicable

reference information. Indeed, it might be relevant to add

traceability links to some of the parameter value details,

as recommended in other model authoring references

(Gall 2021, Otter 2022).

Figure 2 Modelica Linking Record Example

When should the different links be created? The simple

answer is that we should not constrain the method of

creating the model and we should think from the

perspective of the model developer. It might be convenient

to create the link at the moment the relationship appears,

or when it is created, or when the model construction is

characterized as mature. When defining the stroke-length

parameter of an actuator, based on a requirement or part

specification, establish the link when the parameter value

definition is entered. On the other hand, the value may be

a variable with a host of possible solutions. Even if there

is not a definitive or obvious solution, add a preliminary

link in the Modelica model as a place holder, as a reminder

to add the parameters later. This is accomplished by

defining a Modelica record, as illustrated in Figure 2.

A record is a Modelica class. It can be instantiated,

modified or subclassed as many times as desired. Another

advantage of this implementation is that LOTAR relies on

a Functional Mock-up Unit (FMU) to archive analytical

data. The content of the Modelica record is readable in the

FMU. This feature could then be used to bring the linking

to the top level of the package and expose it to the

archiving platform, independent of the hierarchical level

in which the record has been instantiated in the Modelica

model. Generate the FMU and Model Manifest

As previously stated, the LOTAR MBSE model archive

relies on FMI and SSP standards. In most analytical tools

it is easy to generate an FMU. Modelon Impact enables

the functionality by a simple right click on the model and

selecting “export FMU”.

Once the FMU is available, it is easy to access its

“modelDescription.xml” and populate the Part 520

manifest. The optimum approach is for the tool to do this

automatically when the FMU is generated. The P520

manifest was presented in detail in our previous paper

(Coïc 2020) and will not be repeated here.

At this stage, a convenient additional step is to test the

validity of the generated FMU with the FMU Checker

(FMU 2023). This ensures that the FMU to be archived

satisfies the FMI specification.

4.3 Collecting Links from the FMU

The links are embedded in the Modelica model at different

hierarchical levels. This does not represent a convenient

way to store the information and enable access when

committed to an archive. Instead, it would be preferable

to make the dependencies available at the archive level so

that the archive platform supports link queries. One

example: “find all the models that verify a given

requirement”. One way to achieve this is to name each

Modelica P550 record similarly (e.g. containing the term

“traceabilityLink”) and perform a regular expression

search later on to find these. The common naming can

easily be achieved with the “defaultComponentName”

annotation for a Modelica class. Provided that the links

are defined as Modelica records, and instantiated in a non-

protected way (within a restricted class), the parameters of

the linked instances can be allocated to the FMU as

variables. This is easily accomplished via a simple glob or

regular expression, and automated using an external editor

or tool specific package (PyFMI 2018). To expand and

multiply the integration and traceability options, the Part

550 model links can be easily appended to the Part 520

manifest prior to archiving.

4.4 Generate Model Report

When searching a model archive of FMUs, it is extremely

convenient and desirable to include the model’s reference

results in a specified format. This is part of the retrieval

verification process to ensure that the FMU behaves as

intended. This is one of the benefits for creating a Model

Report. When reusing models after retrieval, it is likely

that the model consumer will not have the exact same set-

up to run the model than before archiving (e.g. different

tool or tool version). The model consumer needs

confidence that the model usage is consistent and does not

deliver different results. Comparing the simulation output

to the Model Report builds confidence to the model’s

validity. Therefore, the recommended practice is to add a

reference comprising the results of the model’s execution

to the archive package. A simple approach is to run the

model with specified tolerances representing the

prescribed FMU inputs, and save these in a csv file

together with the results from a selection of variable

trajectories. The csv file is then linked to the model

manifest, together with fixity information (usually a

checksum), to validate its state of preservation during the

retrieval process. The eFMI approach for generating a

Behavioral Model representation of csv reference results

(eFMI 2021), is a suitable alternative and the LOTAR

MBSE working group started investigating it further.

4.5 Self-criticism of the Archival Prototype

This prototype proved that the archiving workflow is

stable when adding links, and that the links can be created

at any level of the model hierarchy. It also proved that they

can then be exposed at the package level to significantly

improve searching the archive.

The prototype results infer additional benefits. Without

careful manual preparation, valuable metadata is often

missing in the modelManifest.xml of an FMU. The same

Modelica record approach could be used for adding this

information to the FMU archive and simplify the

automation creation of the Part 520 manifest.

In summary, a key next step is to clearly specify what

should be included in the Model Report. Only having

reference results might not be enough. It could be relevant

to point at specific behavior(s) in the time trajectories, or

post-processing procedures to compute dependent

variables, that could then be linked to other documents or

models. This could be the focus of future investigations

and prototypes.

5 Prototype: Enable Traceability

across a MBSE Archive

Information Package

The LOTAR Part 550 process defines the concept of

defining MBSE relationships between cross-domain

models and model elements. The technology is based on

the Open Services for Lifecycle Collaboration (OSLC

2021) data standard and reuses some of the properties

defined in the different OSLC vocabularies. Examples

include OSLC Requirements Management (RM), and the

new Systems Modeling Language (SysML® V2 2022)

metamodel. The Part 550 guidelines support the other Part

5XX processes by defining alternative methods to

establish and maintain links across MBSE models and

then expose those links in the AIP.

5.1 Background

Traceability management becomes a cornerstone activity

during the development, archival and reuse of the system

models generated during the early product lifecycle.

Different modeling and process standards infer the need

for traceability, however, the following definition from

the ISO/IEC/IEEE 24765:2017 “Systems and Software

Engineering Vocabulary” defines the traceability features

that will be addressed by the Part 550 process.

Figure 3 Workflow to enable consistent traceability for a full MBSE AIP

“Traceability - the degree to which a relationship can be
established between two or more products of the

development process, especially products having a
predecessor-successor or master-subordinate

relationship to one another”

By applying the following activities to Figure 3,

traceability can be utilized throughout the archiving

process:

• Creation: In this activity, the engineer identifies the

need to create a trace between two system artefacts.

A trace, as an entity, shall contain different metadata

(unique identifier, timestamp, name, author, source,

target, validated, active, etc.). Usually, the creation

process shall also consider the approach to define

each trace (top-down, bottom-up) and its owner.

• Use/application: Once a trace is created and

validated, it is possible to use it for different

purposes, e.g., change impact analysis,

completeness-maturity analysis (system verification

coverage), etc. To do so, it is necessary to provide

tools that allow engineers to query or browse the

traces and identify both the source and target system

artefacts.

• Plan and management: Recognized as a system

engineering activity, the process architects must

establish how traces are created, defined, identified,

validated, recovered, etc. The process shall include

technological support and measures assessing the

trace quality.

• Maintenance: Projects, products and services are

dynamic and change over time. Some parts are often

reused across multiple systems, but aligned to

different functions and interfaces. Suppliers also

evolve their subsystems and components in response

to evolving requirements. To properly exploit the

information about traces, it is necessary to establish

mechanisms to evaluate whether a trace is still active

and up-to-date. Traces shall be versioned to properly

utilize the linked information between system

artefacts. It should be noted that trace maintenance

may rely on human validation.

On the other hand, the infrastructure for traceability

management (Cleland-Huang et al. 2014) requires

different capabilities such as: artifact and trace access to

model layers or different repositories, a traceability

information model, a trace query layer, a trace generation

engine, and some user interaction or reporting mechanism

to ensure that the trace was properly created.

From a theoretical point of view, a system traceability

function (Alvarez-Rodríguez et al. 2020) can be defined

as a function 𝑇 that for a given resource 𝑟𝑘
𝑖 , a target set of

resources 𝑅𝑗 and a context 𝐶 will generate a set of

mappings { (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗
, 𝑐)} where the input resource and other

resource 𝑟𝑘
𝑗
 will be linked together under a certain value

of confidence 𝑐 as the next equation shows:

𝑇: 𝑟𝑘
𝑖 × 𝑅𝑗 × 𝐶 → { (𝑟𝑘

𝑖 , 𝑟𝑘
𝑗
, 𝑐)} / 𝑟𝑘

𝑖 ∈ 𝑅𝑖 ∧ 𝑟𝑘
𝑗

 ∈ 𝑅𝑗 ∧
𝑐 ∈ ℝ (1)

This definition can be generalized and applied to an entity

reconciliation process between two different sets of

resources, 𝑅𝑖 𝑎𝑛𝑑 𝑅𝑗 as represented in the next equation:

𝑇: 𝑅𝑖 × 𝑅𝑗 × 𝐶 → { (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗
, 𝑐)} / 𝑟𝑘

𝑖 ∈ 𝑅𝑖 ∧ 𝑟𝑘
𝑗

 ∈
 𝑅𝑗 ∧ 𝑐 ∈ ℝ (2)

The output of this function will be a set of values

{ (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗
, 𝑐)} mapped to a confidence level. Where 𝑟𝑘

𝑖

represents an element in the source system artifact, and 𝑟𝑘
𝑗

represents an element in the target system artifact. Human

and tool-based validation techniques shall be used to

measure correctness and confidence. In the context of this

pilot, we assume that the traceability function already

exists and we designed and implemented a process to

check the consistency of each link.

5.2 Overview of the Part 550 information

model

The Part 550 information model is defined following the

principles of the Part 5xx series: 1) a set of types inherited

from the Part 5xx series, 2) a set of specific built-in types

and relationships for traceability purposes, and 3)

extensibility mechanisms to adapt the definitions to

specific use cases. The data model definition is

represented by an XML schema, as shown in Figure 4, to

express both structural constraints and data consistency

checks in a parsable format. The data model defines: 1)

general PLM info to capture metadata about the tools

generating the information; 2) link management metadata

depicting configuration management, authorship,

ownership, link behaviors, etc.; 3) model link identifiers,

and the information contained within each link; and 4)

link types and model types that expose information about

the source and target artifacts defined by the trace. As a

basic example, the next figure partially shows a Part 550

manifest including a trace between two packages.

5.3 Specify a Workflow to enable Consistent

Traceability for a full MBSE AIP

Building on the previous definitions, the main goal of the

workflow is to enable consistent traces in the MBSE AIP.

This relies on addressing the following requirements and

utilizing a process that implements the Figure 3 workflow:

Figure 4 A Part 550 Schema example (extract from Notepad++)

1. The system shall process a set of traces designated as

an Authoritative Source of Truth (ASoT). The traces

can be generated using two methods: 1) inferring the

traces from the actual packages that have been

archived (as show in the previous section), or 2)

taking as reference a set of traces managed and

generated by an external tool such as a Product

Lifecycle Management-PLM). For both methods, the

system shall cross-check for consistency and

completeness, and ensure that no trace is missing or

out-of-date.

2. The system shall analyze the trace information

according to the Part 550 information model and

ensure that for any reference, all previously defined

traces between two system artifacts actually exists. A

trace exists if both artifacts are in their designated

repositories, are labeled using a unique identifier and

contain the property information designating the trace

behavior. As shown in Figure 2, the P510 requirement

for actuator stroke length, is linked to the P520

actuator model element.

3. The system shall solve logical identifiers/links in

alignment with the actual physical resources. The set

of traces may contain URLs (Uniform Resource

Locators) as identifiers that are then translated into

physical paths in a file system.

4. The system shall populate a Part 550 manifest for

each verified trace, by gathering information from

each artifact’s originating model manifest (e.g., Part

510 for requirements models and Part 520 for

analytical models).

5. The system shall establish an inventory of all of the

consistent traceable system artifacts by generating a

new Part 550 AIP containing the up-to-date and

consistent trace information.

6. The system shall solve inconsistencies such as

duplicate or different trace names for the same type of

trace, by assigning name extensions or deleting

duplicates.

7. The system shall be capable of gathering trace

information from a GIT-based repository.

5.4 Implementation of the workflow

For the prototype, the workflow defined in Figure 3 was

implemented using Python. More specifically, the

following steps and technologies have been used.

1. Prototype Set-up: Two repositories were created to

simulate both a PLM and Archive repositories

(GitHub PLM and GitHub Archive). Created as

Part 510 and Part 520 compliant packages, the

repositories contained the models, the trace

information and system artifacts.

2. Step 1: Check-out the repositories in a local

repository using the Python library gitpython.

3. Step 2: A static trace file is defined as a reference,

to ensure the consistency and completeness of the

archival process. A table of extended trace names

is defined to avoid any identification

disambiguation. Both are loaded into the Python

environment as the ASoT.

4. The python application identifies the model

specific files in the local file system. The AIPs are

unpackaged, and the program loads and validates

the specific manifests in the form of Part 510 and

Part 520 instances. Then it begins analyzing each

trace for consistency. If everything is correct, the

trace report is saved and added to the original

MBSE AIP package.

5. As depicted in Figure 5, all of the verified traces are

regenerated in the form of a Part 550 instance and

then used to create a new MBSE AIP package. This

package is then committed to the archival

repository.

5.5 Self-criticism of the Traceability Process

The design and implementation of the prototype to

ensure the consistency of traces has demonstrated the

feasibility of the Part 510, Part 520 and Part 550 schemas

in a MBSE environment. From a conceptual point of view,

the Part 550 defines a set of extensible elements and

properties to define links with metadata. However, the

strategy to select the artifacts and packages that will be

part of the MBSE AIP may be externally configured to

only include model packages that are relevant for archival

purposes. This capability is especially applicable when

sharing information with a third-party. Especially if each

traceability link is defined to unify the package contents.

Currently, it is possible to define traces at any level in the

hierarchy: system, subsystem, component or even a single

system element. This would also apply to requirements,

requirement modules or requirements at the specification

level. From a technical perspective, the set of utilities

needed to validate the Part 5xx schemas and build the AIP

packages should be delivered as a formalized Python

application suitable for any practitioner to use and test

against their environments.

6 Future Investigations

The archiving process described in this paper refers to the

MBSE Archive Information Package (AIP), which is

primarily used to archive and retrieve data. A very similar

and complementary MBSE package architecture is used

for the purposes of model sharing and synchronous model

co-development between different companies. For

example, between customer and contractor, or between

the OEM and its suppliers.

In this second case, the assembly and sharing of the

package happens earlier in the lifecycle of the product and

potentially mixes content at different levels of maturity.

However, the model content, metadata and relationships

between cross-domain are very aligned with the general

archiving use case. The package used for collaboration

purposes is defined as the Digital-Technical Data Package

and multiple association bodies (ProSTEP IViP DDP

2021) (INCOSE DEIX 2020) are investigating how to

formalize and standardize the packaging process. The

PDES-LOTAR MBSE team intends to leverage these

activities to further define a metamodel extending the

content and normalizing the package architecture to

resemble a LOTAR AIP. Furthermore, it is also expected

that the implementer prototypes presented in Section 4 and

Section 5 will evolve with the following capabilities:

• Integrating both prototypes into a single Use Case

leveraging a Stratoliner Control System Use Case

example and following the archiving workflow

described in Figure 1.

• Defining and instantiating a Model Report for each

example as indicated in Section 4.6.

• Developing a compliance validation capability

against the model report.

• Building a prototype MBSE AIP for each example

including a holistic view of dictionary links as

defined by ProSTEP’s Digital Data Package

(DDP).

• Extending the use case to use sysMLv2 to define a

neutral and archivable version of the functional-

logical architecture and the V&V cases.

Figure 5 A simplified MBSE AIP package containing a requirement (Part 510) and an analytical (Part 520) model.

7 Conclusion

Standards such as FMI, SSP, ISO STEP AP242 and

AP243 provide good solutions for certain engineering

domains in isolation, such as Behavior Modeling and

Simulation or 3D modeling. However, when archiving or

sharing a system design that is part of a holistic

multidisciplinary product, the industry needs standard

solutions that integrate the data across domains and

provide traceability. Part of this responsibility belongs to

the consortia that develop the STEP and Modelica

standards, absent of the MBSE methods of modeling.

LOTAR provides consistent guidelines that define: how

to archive the relevant product data for preservation, and

how to retrieve, verify and reassemble the archived

information. LOTAR’s value becomes evident when

reusing/migrating design information beyond the life of

the software tools. But long-term preservation is needed

for accident investigations, when exploring future product

support/modifications, and to resolve part/design

obsolescence

The Modelica standards needs to better integrate and

link with other domains in the MBSE space in order to

become a useful asset for the digital certification process.

The current standard does not adequately expose or

manage the metadata needed to link the model, nor capture

the underlying purpose, objectives, methods and risks.

An example was shown where a Modelica model is

linked to its associated requirements and how that

becomes part of a bigger MBSE package to convey and

store the system definition and design. Enabling these

connections is a breakthrough that ultimately provides a

seamless and bidirectional traceability path or “Digital

Thread” to the Verification and Validation Activities and

artifacts produced downstream, thus streamlining the

certification process. This capability needs to be both part

of the standard specification and incorporated into the

vendor tools and software products. When combined with

web services, the digital thread capability is nearly at

hand.

Acknowledgements

The work leading to these results has received funding

from the ProSTEP Ivip Association and from PDES, Inc.

Data Management resources were provided by the Tools

Integration and Model Lifecyle Management Working

Group (TIMLM) of INCOSE. The prototype execution

was performed by Modelon and the Juan Carlos III

University of Madrid. Special acknowledgements to the

LOTAR MBSE Working group that has played a critical

role defining and validating the prototypes in the weekly

meetings and quarterly internal workshops – particularly

to Roger Bolton from The Boeing Company, to Gregory

Pollari from INCOSE and to Kurt Woodham from NASA

Langley Research Center, for their careful review and

constructive comments on this paper.

References

Alvarez-Rodríguez, José María, Roy Mendieta, Valentin

Moreno, Miguel Sánchez-Puebla, and Juan Lloréns.

2020. “Semantic Recovery of Traceability Links

between System Artifacts.” Int. J. Softw. Eng. Knowl.

Eng. 30 (10): 1415–42.

https://doi.org/10.1142/S0218194020400197.

Bouskela, Daniel, Alberto Falcone, et al. (2021).

“Formal Requirements Modeling for Cyber-Physical

Systems Engineering: an integrated solution based on

FORM-L and Modelica”. In: Requirements

Engineering - accepted for publication.

Bouskela, Daniel and Audrey Jardin (2018). “ETL: A

New Temporal Language for the Verification of

Cyberphysical Systems”. In: 2018 Annual IEEE
International Systems Conference (SysCon). URL:

https://ieeexplore.ieee.org/document/ 8369502

Cleland-Huang, Jane, Orlena C. Z. Gotel, Jane Huffman

Hayes, Patrick Mäder, and Andrea Zisman. 2014.

“Software Traceability: Trends and Future

Directions.” In Future of Software Engineering
Proceedings, 55–69. Hyderabad India: ACM.

https://doi.org/10.1145/2593882.2593891.

Clément Coïc, Adrian Murton et al (2020), Modelica,

FMI and SSP for LOTAR of Analytical mBSE

models: First Implementation and Feedback,

Modelica Conference 2020.

https://doi.org/10.3384/ecp2118149

eFMI Standard, January 2021, v1.0-alpha.4,

https://www.efmi-standard.org/media/home/eFMI-

Standard-1.0.0-Alpha-4.html

FMU Compliance Checker, https://github.com/modelica-

tools/FMUComplianceChecker

Gall, Leo, Martin Otter, Matthias Reiner, Matthias

Schäfer, Jakub Tobolár (2021) “View of Continuous

Development and Management of Credible Modelica

Models”, Proceedings of the 14th International

Modelica Conference, September 20-24, 2021,

Linköping, Sweden

https://doi.org/10.3384/ecp21181359. European

ITEA3 Call6 project UPSIM

GitHub Archive,
https://github.com/chemaar/lotar_archive_example

GitHub PLM,
https://github.com/chemaar/lotar_plm_example

Hällqvist, Robert (2023) On the Realization of Credible

Simulations in Aircraft Development: Efficient and

Independent Validation Enabled by Automation,

https://doi.org/10.3384/9789179295981

ISO 14721, (2012) Space data and information transfer

systems - Open archival information system (OAIS),

https://www.iso.org/obp/ui#iso:std:iso:14721:ed-

2:v1:en

ISO/IEC/IEEE 24765, (2017), “Systems and Software

Engineering – Vocabulary”,

https://doi.org/10.1142/S0218194020400197
https://doi.org/10.1145/2593882.2593891
https://doi.org/10.3384/ecp2118149
https://www.efmi-standard.org/media/home/eFMI-Standard-1.0.0-Alpha-4.html
https://www.efmi-standard.org/media/home/eFMI-Standard-1.0.0-Alpha-4.html
https://github.com/modelica-tools/FMUComplianceChecker
https://github.com/modelica-tools/FMUComplianceChecker
https://ecp.ep.liu.se/index.php/modelica/article/view/214/174
https://ecp.ep.liu.se/index.php/modelica/article/view/214/174
https://ecp.ep.liu.se/index.php/modelica/article/view/214/174
https://ecp.ep.liu.se/index.php/modelica/article/view/214/174
https://doi.org/10.3384/ecp21181359
https://github.com/chemaar/lotar_archive_example
https://github.com/chemaar/lotar_plm_example
https://doi.org/10.3384/9789179295981
https://www.oasis-open.org/standards/
https://www.iso.org/obp/ui%23iso:std:iso:14721:ed-2:v1:en
https://www.iso.org/obp/ui%23iso:std:iso:14721:ed-2:v1:en

https://www.iso.org/obp/ui#iso:std:iso-iec-

ieee:24765:ed-2:v1:en

Nallon J., Williams M., (2020). “MBSE Tools Database

Update, and Integrate Models with Tools”.

Presentation: INCOSE International Workshop,

TIMLM Working Group, Torrance, CA, USA. URL:

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?m

edia=mbse:incose_mbse_iw_2020:iw2020_timlm_mb

seworkshop.pdf

Otter, Martin, Matthias Reiner, Jakub Tobolár, Leo Gall,

Matthias Schäfer, (2022), “Towards Modelica Models

with Credibility Information”. Electronics 2022, 11,

2728. https://doi.org/10.3390/electronics11172728

OMG Systems Modeling Language (SysML®) V2

(2022). Standard. Object Management Group-OMG.

https://github.com/Systems-Modeling/SysML-v2-

Release.

OSLC, Open Services for Lifecycle Collaboration,

(2021), an API data linking standard developed by the

Organization for the Advancement of Structured

Information Standards (OAIS) consortium,

https://open-services.net/specifications/

PDES, Inc., Product Data Exchange Standards,

https://pdesinc.org/.

ProSTEP ivip Association (2022), Smart Systems

Engineering Collaborative Simulation-Based

Engineering Version 3.0,

https://www.prostep.org/fileadmin/downloads/PSI_11

_V3_SmartSE_Rec_and_Part_A-I.zip

PyFMI, https://pypi.org/project/PyFMI/

SysML V2, Systems Modeling Language (2022), data

standard developed by the Object Management Group

(OMG), http://www.omgsysml.org/.

UPSIM, Unleash Potentials in Simulation, (2020-2023),

ITEA4 project, https://itea4.org/project/upsim.html

Williams, M (2023), TIMLM-PDES-LOTAR 101,

INCOSE presentation, MBSE, Projects Overview and

Team History, INCOSE

https://incose2.sharepoint.com/

https://www.iso.org/obp/ui%23iso:std:iso-iec-ieee:24765:ed-2:v1:en
https://www.iso.org/obp/ui%23iso:std:iso-iec-ieee:24765:ed-2:v1:en
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_iw_2020:iw2020_timlm_mbseworkshop.pdf%20
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_iw_2020:iw2020_timlm_mbseworkshop.pdf%20
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_iw_2020:iw2020_timlm_mbseworkshop.pdf%20
https://doi.org/10.3390/electronics11172728
https://github.com/Systems-Modeling/SysML-v2-Release
https://github.com/Systems-Modeling/SysML-v2-Release
https://www.oasis-open.org/standards/
https://open-services.net/specifications/
https://pdesinc.org/
https://www.prostep.org/fileadmin/downloads/PSI_11_V3_SmartSE_Rec_and_Part_A-I.zip
https://www.prostep.org/fileadmin/downloads/PSI_11_V3_SmartSE_Rec_and_Part_A-I.zip
https://pypi.org/project/PyFMI/
http://www.omgwiki.org/
http://www.omgsysml.org/
https://itea4.org/project/upsim.html
https://incose2.sharepoint.com/

