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Abstract 

LOng Time Archiving and Retrieval (LOTAR) of models 

is key to using the full capabilities of Model-Based 

System Engineering (MBSE) in the design lifecycle. 

LOTAR supports model exchange, reuse and the long-

term preservation of data. Archiving also supports the 

preservation of our valuable product designs and 

knowledge. Intending to be tool agnostic, LOTAR for 

MBSE uses data standards from the Modelica Association 

and other consortia. Therefore, it is important that users of 

the Modelica based tools and standards understand the 

LOTAR process to ensure that their data is reusable and 

suitable for exchange and preservation. The PDES-

LOTAR MBSE workgroup is developing a series of 

EN/NAS 9300 process specifications to standardize the 

data preservation process, across the aerospace industry. 

These specifications are customized for each specific 

MBSE modeling domain, including: models illustrating 

the logical and functional architectures; models to develop 

and verify design requirements; models depicting 

behaviors and simulations; and techniques for linking data 

across multiple models. For the purpose of creating 

simulation models, the group recommends using the 

Modelica language standards, FMI (Functional Mockup 

Interface), eFMI (FMI for embedded systems), and SSP 

(System Structure and Parameterization) standards. The 

LOTAR process requires the integration of industrial data, 

data standards, and compliant vendor software. For the 

purpose of this example, the archive process was 

demonstrated by developing a tool-agnostic Modelica 

model prototype that was exported into an FMU. The 

unique features of the Modelica and FMI standards were 

exposed and greatly enhanced using the Modelon Impact 

software. The recommendations and workflow proposed 

in this report were derived from this prototype with the 

intent of significantly improving future LOTAR 

implementations and promoting the adoption of these 

standards across multiple industries. 
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1 Introduction 

The issue is simple. The software products that we use to 

build our models are disposable. They jeopardized the 

retention and reusability of our knowledge. In an 

Engineering-Manufacturing environment end-of-life is 

five years for most software versions, and ten years for 

backwards compatibility. However, after considering the 

regulatory requirements, in-service support, future 

product modifications, and the potential for accident 

investigations, we must consider reliable access for 

twenty years, or even up to fifty years for aircraft. This is 

why LOTAR is important, and why it also promotes and 

accelerates the industry’s efforts toward a digital 

transformation. 

The initiative to develop and qualify international data 

standards rely on developing prototypes that couple the 

engineering process with industrial data in a repeatable 

workflow of procedures. In a first publication (Coïc 

2020), the authors presented the LOTAR process and first 

prototype results. This paper extends that effort and has 

three goals: 

1. To present the LOTAR framework for MBSE 

models, emphasize the reliance on existing data 

standards (like Modelica, FMI and SSP), and to 

establish the need for capturing and exposing model 

metadata. 

2. Highlight the process needed to create the prototype 

in order to support Peer Reviews and future testing 

of the standard prior to its release.  

3. Use the prototype to demonstrate new/enhanced 

features, provide evidence for change requests, and 

expose specification improvements to the individual 

Modelica Association projects (e.g., Modelica 

language, FMI, eFMI, and SSP). 

The first communication was well received and aligned 

with investigations executed by other consortia and 

researchers in a parallel timeline. A notable example is the 
work organized within the European ITEA3 Call6 project 

(UPSIM 2020) on the topic of Credible models (Gall 2021 



 

 

and Otter 2022). One key take-away from this project is 

the diverse and unique use of Modelica records to host and 

expose metadata parameters and thus compensate for the 

unstructured support for metadata in the Modelica 

language specification. A second example is the 

acknowledgement (Hällqvist 2023) of how differences in 

the metadata, derived from different versions of the same 

model, enables the traceability and integration of features 

demonstrated by multiple models from different authors 

developed during the product life-cycle. A similar 

approach was chosen for the work performed in 

subsequent LOTAR prototypes expressively for 

traceability purposes and is presented later in section 5. 

This paper differs from our previous communication 

(Coïc 2020) and attempts to expand the context of MBSE 

implementations (Nallon 2020). We know we can archive 

models and we also acknowledge that archiving a model 

alone does not fully enable its reuse. It is also necessary 

to archive its dependencies, purpose, sensitivity and 

predictions. In this paper, the authors present the linking 

capabilities that enable traceability of the model’s 

purpose, objectives, and relationships to other models and 

artifacts. For the purpose of this communication, we 

defined explicit links from the behavior model’s elements 

to their respective requirement specification. 

Section 2 provides an overview of the industry value 

when integrating Modelica Standards with standards from 

other MBSE domains. Section 3 introduces the in-work 

deliverables from the PDES-LOTAR MBSE team. 

Section 4 describes an example linking a single Modelica 

model with its associated requirements model. Section 5 

describes how to capture traceability links holistically in 

the MBSE Archive Information Package (AIP). Section 0 

proposes a potential list of future investigations. Section 7 

summarizes the results and recommendations. 

2 The Value of MBSE Data 

Standards 

Multiple surveys recently conducted by the ProSTEP IVIP 

Association across the Automotive and Aerospace 

Industries indicate, that in the next 5 years the efforts 

focused on Modeling and Simulation and its use for 

Product certification, will increase at least 50-100% 

(ProSTEP IVIP 2022). 

With an increase in digitalized development and its 

application to the certification processes through Model 

Based Engineering (MBE), the industry will discover new 

opportunities, while also facing new challenges. 

Partially due to the short life-cycle of application 

software, managing diverse digital designs while enabling 

future model reuse is a challenge across all industries. 

Facing this challenge is especially pertinent to the 

Aerospace Industry with products that have a lifespan 

longer than 40 years.  

Digitalization encourages collaborative model sharing 

and cross-company co-development with the added 

challenges posed by Intellectual Property (IP) Protection, 

Change Management, and Configuration Management. 

Standards such as FMI, SSP and ISO STEP AP242 

provide good solutions for certain domains in isolation, 

such as Behavior Modeling and Simulation or 3D 

modeling. However, when archiving or sharing a system 

design, that is part of a holistic multidisciplinary product, 

the industry needs standard solutions to integrate the data 

across domains. The results must provide traceability from 

top to bottom and bottom to top. From stakeholder 

requirements, to the design requirements. From the 

functional architecture to the installed software products. 

From behavior analysis and simulations to the hardware 

implementations and vice versa. This is the priority of the 

PDES-LOTAR MBSE team (Williams 2023). 

3 Archiving Domains and Workflow 

The PDES-LOTAR MBSE team focuses on the applicable 

data standards, the process, design sustainment and design 

reuse. Under the category of LOTAR for MBSE (LOTAR 

2023) the following sub-domain documentation has been 

proposed: 

• Part 500:  General MBSE. The fundamental 

concepts for long term archiving and retrieval of 

Model-Based Systems Engineering information. 

• Part 510:  Requirements Management. The text, 

graphics, tables, models, parameters, reference and 

specification information that defines a product. 

• Part 515:  Validation and Verification. The “text 

based” and “parameter based” information (expands 

on Part 510), including Use Cases and Model Reports. 

• Part 520:  Analytical Behaviour Models. The 

system or component simulations as described by 

mathematical specification or executable code, 

containing differential, algebraic and discrete 

equations (not FEM). 

• Part 530:  Architecture Models. The system 

functional, logical and structural representations, 

defined using architecture description languages 

(ADLs). 

• Part 540:  The Logical Bill of Materials (LBOM). 

The system’s physical implementation requirements 

and dependencies that feed the 3D spatial and 

manufacturing designs. 

• Part 550: Digital or Relational Links. The 

traceability and relationship specifications between 

interrelated models and elements across numerous 

tools.  

Figure 1 below depicts the Archive and Retrieval Process 

Workflow for MBSE as defined in the LOTAR Part 500 

document listed above. The goal is to reuse archived data, 

if applicable, and create the Authoritative Source of Truth 

(ASoT). 



 

 

 
Figure 1. Archive and Retrieval Process Workflow 

A pilot implementation of a preliminary workflow for 

behavior models was described in the first publication 

(Coïc 2020) and refined in subsequent prototypes 

producing a generic process for all MBSE models and 

data. 

The “MBSE model” is a generic term used in the 

workflow and can refer to a model from any of the 

previously mentioned sub-domains in isolation or, more 

frequently, to a linked set of cross-domain MBSE models. 

For the purpose of archiving, models can be assembled in 

a package, or segregated into different repository  

packages. Based on guidelines from the OAIS standard 

(ISO 14721), the model set is referred to as the “MBSE 

Archive Information Package”, AIP, and contains all the 

artifacts necessary for preserving, retrieving, restoring and 

disseminating the digital information. This includes the 

Verification & Validation artifacts of a given system or 

subsystem, the fixity information relating to security of the 

archive, and the linking information preserving the 

relationships and interdependencies of artifacts both 

internal and external to the package. 

The following two sections describe in more detail the 

prototypes developed. The first example demonstrates 

how to link a single Modelica model with its associated 

requirements model, and the second example describes 

how to manage traceability links holistically at the MBSE 

AIP package level 

4 Prototype: Archiving a Modelica 

Model with MBSE Links 

The previous section introduced the archiving workflow 

and the architecture of an Archive Information Package. 

This section will illustrate how each step of the process 

can be implemented. This presents a solution that is based 

on open-source packages and, as the wording “prototype” 

indicates, this is not a unique solution nor a standard for 

future implementations. However, this proves that the 

suggested concepts can be implemented by tool vendors 

and allows us to explore process alternatives and 

procedural improvements before standards are released. 

4.1 Why Start with a Modelica Model? 

It seems relevant to remind new users that the LOTAR 

standard is not tool-dependent when it comes to the model 

editor. However, the prototypes developed in the scope of 

this working group should utilize, as much as possible, 

open standards or open-source packages. Therefore, the 

starting point of the prototype is a Modelica model. The 

same common capabilities could be implemented by 

different tool vendors, including those who rely on 

proprietary languages or encrypted models. Modelica is 

not a requirement, it is an open enabler to demonstrate the 

concept. 



 

 

4.2 Linking Capabilities in a Modelica Model 

Models are developed for a given goal, objective or 

purpose. Often, models are created to verify that a system 

design meets its requirements. There might be several 

models needed to support the verification process. The 

model might be a testable requirement, describe a 

functional system architecture, used to keep track of 

decisions, or validate the selection of a given design 

technology. The goal of the archived model is to provide 

a key to information that the model retriever would benefit 

from accessing in the future. However, it is not enough 

just to mention or document the model’s goal. It is also 

necessary to link the target model to the actual documents 

or supporting models that host the information that 

describes its purpose, boundaries, and the methods used to 

create it. The model is incomplete without traceability to 

its underlying requirements. This is the purpose of the Part 

550 that is listed above, and also presented in this paper. 

The Part 550 does not limit its scope to model goals. It 

covers any type of link needed to point to the applicable 

reference information. Indeed, it might be relevant to add 

traceability links to some of the parameter value details, 

as recommended in other model authoring references 

(Gall 2021, Otter 2022). 

 
Figure 2 Modelica Linking Record Example 

When should the different links be created? The simple 

answer is that we should not constrain the method of 

creating the model and we should think from the 

perspective of the model developer. It might be convenient 

to create the link at the moment the relationship appears, 

or when it is created, or when the model construction is 

characterized as mature. When defining the stroke-length 

parameter of an actuator, based on a requirement or part 

specification, establish the link when the parameter value 

definition is entered. On the other hand, the value may be 

a variable with a host of possible solutions. Even if there 

is not a definitive or obvious solution, add a preliminary 

link in the Modelica model as a place holder, as a reminder 

to add the parameters later. This is accomplished by 

defining a Modelica record, as illustrated in Figure 2. 

A record is a Modelica class. It can be instantiated, 

modified or subclassed as many times as desired. Another 

advantage of this implementation is that LOTAR relies on 

a Functional Mock-up Unit (FMU) to archive analytical 

data. The content of the Modelica record is readable in the 

FMU. This feature could then be used to bring the linking 

to the top level of the package and expose it to the 

archiving platform, independent of the hierarchical level 

in which the record has been instantiated in the Modelica 

model. Generate the FMU and Model Manifest 

As previously stated, the LOTAR MBSE model archive 

relies on FMI and SSP standards. In most analytical tools 

it is easy to generate an FMU. Modelon Impact enables 

the functionality by a simple right click on the model and 

selecting “export FMU”. 

Once the FMU is available, it is easy to access its 

“modelDescription.xml” and populate the Part 520 

manifest. The optimum approach is for the tool to do this 

automatically when the FMU is generated. The P520 

manifest was presented in detail in our previous paper 

(Coïc 2020) and will not be repeated here. 

At this stage, a convenient additional step is to test the 

validity of the generated FMU with the FMU Checker 

(FMU 2023). This ensures that the FMU to be archived 

satisfies the FMI specification. 

4.3 Collecting Links from the FMU 

The links are embedded in the Modelica model at different 

hierarchical levels. This does not represent a convenient 

way to store the information and enable access when 

committed to an archive. Instead, it would be preferable 

to make the dependencies available at the archive level so 

that the archive platform supports link queries. One 

example: “find all the models that verify a given 

requirement”. One way to achieve this is to name each 

Modelica P550 record similarly (e.g. containing the term 

“traceabilityLink”) and perform a regular expression 

search later on to find these. The common naming can 

easily be achieved with the “defaultComponentName” 

annotation for a Modelica class. Provided that the links 

are defined as Modelica records, and instantiated in a non-

protected way (within a restricted class), the parameters of 

the linked instances can be allocated to the FMU as 

variables. This is easily accomplished via a simple glob or 

regular expression, and automated using an external editor 

or tool specific package (PyFMI 2018). To expand and 

multiply the integration and traceability options, the Part 

550 model links can be easily appended to the Part 520 

manifest prior to archiving. 



 

 

4.4 Generate Model Report 

When searching a model archive of FMUs, it is extremely 

convenient and desirable to include the model’s reference 

results in a specified format. This is part of the retrieval 

verification process to ensure that the FMU behaves as 

intended. This is one of the benefits for creating a Model 

Report. When reusing models after retrieval, it is likely 

that the model consumer will not have the exact same set-

up to run the model than before archiving (e.g. different 

tool or tool version). The model consumer needs 

confidence that the model usage is consistent and does not 

deliver different results. Comparing the simulation output 

to the Model Report builds confidence to the model’s 

validity. Therefore, the recommended practice is to add a 

reference comprising the results of the model’s execution 

to the archive package. A simple approach is to run the 

model with specified tolerances representing the 

prescribed FMU inputs, and save these in a csv file 

together with the results from a selection of variable 

trajectories. The csv file is then linked to the model 

manifest, together with fixity information (usually a 

checksum), to validate its state of preservation during the 

retrieval process. The eFMI approach for generating a 

Behavioral Model representation of csv reference results 

(eFMI 2021), is a suitable alternative and the LOTAR 

MBSE working group started investigating it further. 

4.5 Self-criticism of the Archival Prototype 

This prototype proved that the archiving workflow is 

stable when adding links, and that the links can be created 

at any level of the model hierarchy. It also proved that they 

can then be exposed at the package level to significantly 

improve searching the archive. 

The prototype results infer additional benefits. Without 

careful manual preparation, valuable metadata is often 

missing in the modelManifest.xml of an FMU. The same 

Modelica record approach could be used for adding this 

information to the FMU archive and simplify the 

automation creation of the Part 520 manifest. 

In summary, a key next step is to clearly specify what 

should be included in the Model Report. Only having 

reference results might not be enough. It could be relevant 

to point at specific behavior(s) in the time trajectories, or 

post-processing procedures to compute dependent 

variables, that could then be linked to other documents or 

models. This could be the focus of future investigations 

and prototypes. 

5 Prototype: Enable Traceability 

across a MBSE Archive 

Information Package 

The LOTAR Part 550 process defines the concept of 

defining MBSE relationships between cross-domain 

models and model elements. The technology is based on 

the Open Services for Lifecycle Collaboration (OSLC 

2021) data standard and reuses some of the properties 

defined in the different OSLC vocabularies. Examples 

include OSLC Requirements Management (RM), and the 

new  Systems Modeling Language (SysML® V2 2022) 

metamodel. The Part 550 guidelines support the other Part 

5XX processes by defining alternative methods to 

establish and maintain links across MBSE models and 

then expose those links in the AIP. 

5.1 Background 

Traceability management becomes a cornerstone activity 

during the development, archival and reuse of the system 

models generated during the early product lifecycle. 

Different modeling and process standards infer the need 

for traceability, however, the following definition from 

the ISO/IEC/IEEE 24765:2017 “Systems and Software 

Engineering Vocabulary” defines the traceability features 

that will be addressed by the Part 550 process. 

 

 
Figure 3 Workflow to enable consistent traceability for a full MBSE AIP 



 

 

“Traceability - the degree to which a relationship can be 
established between two or more products of the 

development process, especially products having a 
predecessor-successor or master-subordinate 

relationship to one another” 

By applying the following activities to Figure 3, 

traceability can be utilized throughout the archiving 

process: 

• Creation: In this activity, the engineer identifies the 

need to create a trace between two system artefacts. 

A trace, as an entity, shall contain different metadata 

(unique identifier, timestamp, name, author, source, 

target, validated, active, etc.). Usually, the creation 

process shall also consider the approach to define 

each trace (top-down, bottom-up) and its owner. 

• Use/application: Once a trace is created and 

validated, it is possible to use it for different 

purposes, e.g., change impact analysis, 

completeness-maturity analysis (system verification 

coverage), etc. To do so, it is necessary to provide 

tools that allow engineers to query or browse the 

traces and identify both the source and target system 

artefacts. 

• Plan and management: Recognized as a system 

engineering activity, the process architects must 

establish how traces are created, defined, identified, 

validated, recovered, etc. The process shall include 

technological support and measures assessing the 

trace quality. 

• Maintenance: Projects, products and services are 

dynamic and change over time. Some parts are often 

reused across multiple systems, but aligned to 

different functions and interfaces. Suppliers also 

evolve their subsystems and components in response 

to evolving requirements. To properly exploit the 

information about traces, it is necessary to establish 

mechanisms to evaluate whether a trace is still active 

and up-to-date. Traces shall be versioned to properly 

utilize the linked information between system 

artefacts. It should be noted that trace maintenance 

may rely on human validation. 

On the other hand, the infrastructure for traceability 

management (Cleland-Huang et al. 2014) requires 

different capabilities such as: artifact and trace access to 

model layers or different repositories, a traceability 

information model, a trace query layer, a trace generation 

engine, and some user interaction or reporting mechanism 

to ensure that the trace was properly created. 

From a theoretical point of view, a system traceability 

function (Alvarez-Rodríguez et al. 2020) can be defined 

as a function 𝑇 that for a given resource 𝑟𝑘
𝑖  , a target set of 

resources 𝑅𝑗  and a context 𝐶  will generate a set of 

mappings { (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗
, 𝑐)} where the input resource and other 

resource 𝑟𝑘
𝑗
 will be linked together under a certain value 

of confidence 𝑐 as the next equation shows:  

𝑇: 𝑟𝑘
𝑖  ×  𝑅𝑗  ×  𝐶 → { (𝑟𝑘

𝑖 , 𝑟𝑘
𝑗
, 𝑐)} / 𝑟𝑘

𝑖 ∈  𝑅𝑖 ∧ 𝑟𝑘
𝑗

 ∈  𝑅𝑗  ∧
𝑐 ∈ ℝ  (1) 

This definition can be generalized and applied to an entity 

reconciliation process between two different sets of 

resources, 𝑅𝑖  𝑎𝑛𝑑 𝑅𝑗 as represented in the next equation: 

𝑇: 𝑅𝑖  ×  𝑅𝑗  ×  𝐶 → { (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗
, 𝑐)} / 𝑟𝑘

𝑖 ∈  𝑅𝑖 ∧ 𝑟𝑘
𝑗

 ∈
 𝑅𝑗  ∧ 𝑐 ∈ ℝ  (2) 

The output of this function will be a set of values 

{ (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗
, 𝑐)}  mapped to a confidence level. Where 𝑟𝑘

𝑖  

represents an element in the source system artifact, and 𝑟𝑘
𝑗
 

represents an element in the target system artifact. Human 

and tool-based validation techniques shall be used to 

measure correctness and confidence. In the context of this 

pilot, we assume that the traceability function already 

exists and we designed and implemented a process to 

check the consistency of each link. 

5.2 Overview of the Part 550 information 

model 

The Part 550 information model is defined following the 

principles of the Part 5xx series: 1) a set of types inherited 

from the Part 5xx series, 2) a set of specific built-in types 

and relationships for traceability purposes, and 3) 

extensibility mechanisms to adapt the definitions to 

specific use cases. The data model definition is 

represented by an XML schema, as shown in Figure 4, to 

express both structural constraints and data consistency 

checks in a parsable format. The data model defines: 1) 

general PLM info to capture metadata about the tools 

generating the information; 2) link management metadata 

depicting configuration management, authorship, 

ownership, link behaviors, etc.; 3) model link identifiers, 

and the information contained within each link; and 4) 

link types and model types that expose information about 

the source and target artifacts defined by the trace. As a 

basic example, the next figure partially shows a Part 550 

manifest including a trace between two packages. 

5.3 Specify a Workflow to enable Consistent 

Traceability for a full MBSE AIP 

Building on the previous definitions, the main goal of the 

workflow is to enable consistent traces in the MBSE AIP. 

This relies on addressing the following requirements and 

utilizing a process that implements the Figure 3 workflow: 

 



 

 

 
Figure 4 A Part 550 Schema example (extract from Notepad++) 

1. The system shall process a set of traces designated as 

an Authoritative Source of Truth (ASoT). The traces 

can be generated using two methods: 1) inferring the 

traces from the actual packages that have been 

archived (as show in the previous section), or 2) 

taking as reference a set of traces managed and 

generated by an external tool such as a Product 

Lifecycle Management-PLM). For both methods, the 

system shall cross-check for consistency and 

completeness, and ensure that no trace is missing or 

out-of-date. 

2. The system shall analyze the trace information 

according to the Part 550 information model and 

ensure that for any reference, all previously defined 

traces between two system artifacts actually exists. A 

trace exists if both artifacts are in their designated 

repositories, are labeled using a unique identifier and 

contain the property information designating the trace 

behavior. As shown in Figure 2, the P510 requirement 

for actuator stroke length, is linked to the P520 

actuator model element. 

3. The system shall solve logical identifiers/links in 

alignment with the actual physical resources. The set 

of traces may contain URLs (Uniform Resource 

Locators) as identifiers that are then translated into 

physical paths in a file system. 

4. The system shall populate a Part 550 manifest for 

each verified trace, by gathering information from 

each artifact’s originating model manifest (e.g., Part 

510 for requirements models and Part 520 for 

analytical models). 

5. The system shall establish an inventory of all of the 

consistent traceable system artifacts by generating a 

new Part 550 AIP containing the up-to-date and 

consistent trace information. 

6. The system shall solve inconsistencies such as 

duplicate or different trace names for the same type of 

trace, by assigning name extensions or deleting 

duplicates. 

7. The system shall be capable of gathering trace 

information from a GIT-based repository.  

5.4 Implementation of the workflow 

For the prototype, the workflow defined in Figure 3 was 

implemented using Python. More specifically, the 

following steps and technologies have been used. 

1. Prototype Set-up: Two repositories were created to 

simulate both a PLM and Archive repositories 

(GitHub PLM and GitHub Archive). Created as 

Part 510 and Part 520 compliant packages, the 

repositories contained the models, the trace 

information and system artifacts. 

2. Step 1: Check-out the repositories in a local 

repository using the Python library gitpython. 

3. Step 2: A static trace file is defined as a reference, 

to ensure the consistency and completeness of the 

archival process. A table of extended trace names 

is defined to avoid any identification 

disambiguation. Both are loaded into the Python 

environment as the ASoT. 

4. The python application identifies the model 

specific files in the local file system. The AIPs are 

unpackaged, and the program loads and validates 

the specific manifests in the form of Part 510 and 

Part 520 instances. Then it begins analyzing each 

trace for consistency. If everything is correct, the 

trace report is saved and added to the original 

MBSE AIP package. 

5. As depicted in Figure 5, all of the verified traces are 

regenerated in the form of a Part 550 instance and 

then used to create a new MBSE AIP package. This 

package is then committed to the archival 

repository. 

5.5 Self-criticism of the Traceability Process 

The design and implementation of the prototype to 

ensure the consistency of traces has demonstrated the 

feasibility of the Part 510, Part 520 and Part 550 schemas 

in a MBSE environment. From a conceptual point of view, 

the Part 550 defines a set of extensible elements and 

properties to define links with metadata. However, the 

strategy to select the artifacts and packages that will be 

part of the MBSE AIP may be externally configured to 

only include model packages that are relevant for archival 

purposes. This capability is especially applicable when 



 

 

sharing information with a third-party. Especially if each 

traceability link is defined to unify the package contents. 

Currently, it is possible to define traces at any level in the 

hierarchy: system, subsystem, component or even a single 

system element. This would also apply to requirements, 

requirement modules or requirements at the specification 

level. From a technical perspective, the set of utilities 

needed to validate the Part 5xx schemas and build the AIP 

packages should be delivered as a formalized Python 

application suitable for any practitioner to use and test 

against their environments. 

6 Future Investigations 

The archiving process described in this paper refers to the 

MBSE Archive Information Package (AIP), which is 

primarily used to archive and retrieve data. A very similar 

and complementary MBSE package architecture is used 

for the purposes of model sharing and synchronous model 

co-development between different companies. For 

example, between customer and contractor, or between 

the OEM and its suppliers. 

In this second case, the assembly and sharing of the 

package happens earlier in the lifecycle of the product and 

potentially mixes content at different levels of maturity. 

However, the model content, metadata and relationships 

between cross-domain are very aligned with the general 

archiving use case. The package used for collaboration 

purposes is defined as the Digital-Technical Data Package 

and multiple association bodies (ProSTEP IViP DDP 

2021) (INCOSE DEIX 2020) are investigating how to 

formalize and standardize the packaging process. The 

PDES-LOTAR MBSE team intends to leverage these 

activities to further define a metamodel extending the 

content and normalizing the package architecture to 

resemble a LOTAR AIP. Furthermore, it is also expected 

that the implementer prototypes presented in Section 4 and 

Section 5 will evolve with the following capabilities: 

• Integrating both prototypes into a single Use Case 

leveraging a Stratoliner Control System Use Case 

example and following the archiving workflow 

described in Figure 1. 

• Defining and instantiating a Model Report for each 

example as indicated in Section 4.6. 

• Developing a compliance validation capability 

against the model report. 

• Building a prototype MBSE AIP for each example 

including a holistic view of dictionary links as 

defined by ProSTEP’s Digital Data Package 

(DDP).  

• Extending the use case to use sysMLv2 to define a 

neutral and archivable version of the functional-

logical architecture and the V&V cases. 

 

 

 

 

 

Figure 5 A simplified MBSE AIP package containing a requirement (Part 510) and an analytical (Part 520) model. 

 

  



 

 

7 Conclusion 

Standards such as FMI, SSP, ISO STEP AP242 and 

AP243 provide good solutions for certain engineering 

domains in isolation, such as Behavior Modeling and 

Simulation or 3D modeling. However, when archiving or 

sharing a system design that is part of a holistic 

multidisciplinary product, the industry needs standard 

solutions that integrate the data across domains and 

provide traceability. Part of this responsibility belongs to 

the consortia that develop the STEP and Modelica 

standards, absent of the MBSE methods of modeling. 

LOTAR provides consistent guidelines that define: how 

to archive the relevant product data for preservation, and 

how to retrieve, verify and reassemble the archived 

information. LOTAR’s value becomes evident when 

reusing/migrating design information beyond the life of 

the software tools. But long-term preservation is needed 

for accident investigations, when exploring future product 

support/modifications, and to resolve part/design 

obsolescence 

The Modelica standards needs to better integrate and 

link with other domains in the MBSE space in order to 

become a useful asset for the digital certification process. 

The current standard does not adequately expose or 

manage the metadata needed to link the model, nor capture 

the underlying purpose, objectives, methods and risks. 

An example was shown where a Modelica model is 

linked to its associated requirements and how that 

becomes part of a bigger MBSE package to convey and 

store the system definition and design. Enabling these 

connections is a breakthrough that ultimately provides a 

seamless and bidirectional traceability path or “Digital 

Thread” to the Verification and Validation Activities and 

artifacts produced downstream, thus streamlining the 

certification process. This capability needs to be both part 

of the standard specification and incorporated into the 

vendor tools and software products. When combined with 

web services, the digital thread capability is nearly at 

hand. 
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