

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

This work is part of ORCA (funded by the German Federal Ministry for economy and energy) and CrESt (funded by the German Federal Ministry of Education and Research)

Co-Simulation scenarios in industrial production plants

Two use cases from the manufacturing domain and the process industry

Andrés Botero, Tim Schenk, Jan C. Wehrstedt

Public © Siemens AG 2019

siemens.com

Some challenges for modular production plants during the lifecycle SIEMENS Ingenuity for Life

Manufacturing plants

Task

Arrange and parameterize plant out of available components to

- > avoid bottlenecks
- > maximize total load capability
- > assure quality

Challenge

Source: Siemens

Setup of comprehensive plant simulations by considering impact of all hierarchical levels:

- Material flow
- > 3D kinematic in each cell
- First principle simulation of components

Process Plants

Task

Verify the engineered plant automation virtually before the plant is commissioned in reality

- **Challenge** Conventional approach is not applicable as
- inner module behavior (automation & process) is unknown to plant commissioner and
- modules probably have different automation systems and thus require multi-vendor SW environment.

Source: Siemens

Engineering of Manufacturing plants

> Virtual commissioning of process plants

Public © Siemens AG 2019Page 304.03.2019

Corporate Technology

Comprehensive simulation of modular manufacturing plants has to be executed by using different tools

Source: Siemens

	Plant Simulation	Process Simulate
Туре	Material flow	3D kinematic
Timing	Event-based	Time discrete
Scope	Logistics, material flow, dimensioning,	Interaction between machines, humans and product
Purpose	Calculation of plant KPIs	Evaluation of dynamic behavior
Modeling aspects	Cells are modelled as time-delay blocks	Physical behavior is simplified

A Co-Simulation approach accounting for different time evaluation **SIEMENS** strategies of the clients is required Ingenuity for life

Use Cases for such a coupling

> Validation of detailed cell behavior in the whole plant context (different cell configs, different component vendors)

Accurate plant simulation by detailed cell behavior

PreparationProcessingPackingPlant Simulation Plant 1Plant Simulation Plant 1Plant Simulation Plant 2Image: Construction of the process SimulationImage: Construction of the process Simulation of the process Simulation of the process SimulationImage: Construction of the process Simulat

Realization by a master-slave co-simulation environment

MS Visio Job Manager Any OPC \succ Establish communication between Plant Simulation and OPC MS Visio Client Client Process Simulate Matlab Simulink Server IF Simulink Simulation Client Client Send Server 48° 58 28 35 10 16 FMI for PLCSim Co-Simulation Client Any FMU Client Start Operation for Co-Sim PLCSim Process PCS7 OS Simulate Client MS Excel **Operation End** Client PCS7 OS Receive MS Excel Co-Sim Master coordinates event-based. time-discrete and continuous simulators

Public © Siemens AG 2019

Example Setup

Page 5 04.03.2019

Manufacturing plants

Demo of interplay between Plant Simulation and Process Simulate SIEMENS Ingenuity for life

© Siemens CT RDA SDT MST

Public © Siemens AG 2019 Page 6 04.03.2019

> Engineering of Manufacturing plants

Virtual commissioning of process plants

Public © Siemens AG 2019 Page 7 04.03.2019

Corporate Technology

Modular process plants are a new approach to reduce engineering **SIEMENS** effort, reduce downtimes and be much more flexible Ingenuity for Life

Module Type Package (MTP)

Description used for integration into higher level plant automation

- Module services (utilized in state-based process control)
- Communication variables
- Communication technology
- HMI description
- Open to further aspects
- Connection of PEAs results in process
 - 1. Import of MTPs
 - 2. Orchestration of the services

Corporate Technology

Process Plants

Virtual commissioning of a process plant has to test the engineered **SIEMENS** automation against different virtual realizations of the plant Ingenuity for life

Public © Siemens AG 2019

Page 9 04.03.2019

Demo of proprietary modular VIBN with Siemens tool SIMIT

Public © Siemens AG 2019

Page 10 04.03.2019

Virtual PEAs (modules) can solve the problem of setting up a comprehensive simulation model of the whole plant

Co-Simulation realizations can be set up by either vendor specific tools or a generic co-simulation environment

Public © Siemens AG 2019

Page 12 04.03.2019

Co-Simulation together with utilization of standards like FMI and **SIEMENS** the new SSP speed up different use cases in the production industry Ingenuity for Life

Summary & Outlook

- As production plants get more modular and thus multi-vendor plants, simulations cannot be set up with a single simulation environment anymore.
- The modularity enables a new flexibility of the plants, which allow fast plant changes. To not loose this advantage by conservative (long-lasting) verifications of the new setup, the (simulation-based) validations have to be as flexible.
- Co-Simulation is actually the appropriate choice of exchange as most of the commercial simulation tools in the production industry support only one specific solver type.
- The engineering of production plants results already in a topology model. Export into a standard like SSP enables an easy setup of system simulations independent of the specific simulation environment.
- Virtual commissioning tools should be able to import Co-Simulation FMUs (Siemens SIMIT plans to release this feature in next version). Virtual controller should be able to export FMUs.

Andrés Botero
CT RDA SDT MST-DE
Otto-Hahn-Ring 6
81739 Munich
andres.botero@siemens.com

Tim Schenk CT RDA SDT MST-DE Otto-Hahn-Ring 6 81739 Munich tim.schenk@siemens.com

Dr. Jan Christoph Wehrstedt
CT RDA SDT MST-DE
Otto-Hahn-Ring 6
81739 Munich
janchristoph.wehrsted@siemens.com

